Foliations and complemented framed structures

On an odd dimensional manifold, we define a structure which generalizes several known structures on almost contact manifolds, namely Sasakian, trans-Sasakian, quasi-Sasakian, Kenmotsu and cosymplectic structures. This structure, hereinafter called a G.Q.S. manifold, is defined on an almost contact m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Belgian Mathematical Society, Simon Stevin Simon Stevin, 2010-08, Vol.17 (3), p.499-512
1. Verfasser: Calin, Constantin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On an odd dimensional manifold, we define a structure which generalizes several known structures on almost contact manifolds, namely Sasakian, trans-Sasakian, quasi-Sasakian, Kenmotsu and cosymplectic structures. This structure, hereinafter called a G.Q.S. manifold, is defined on an almost contact metric manifold and satisfies an additional condition (1.5). We then consider a codimension-one distribution on a G.Q.S. manifold. Necessary and sufficient conditions for the normality of the complemented framed structure on the distribution defined on a G.Q.S manifold are studied (Th. 3.2). The existence of the foliation on G.Q.S. manifolds and of bundle-like metrics are also proven. It is shown that under certain circumstances a new foliation arises and its properties are investigated. Some examples illustrating these results are given in the final part of this paper. 2000 Mathematics Subject Classification : Primary: 53C40,53C55; Secondary: 53C12,53C42.
ISSN:1370-1444
2034-1970
DOI:10.36045/bbms/1284570735