About spaces of $\omega_1$-$\omega_2$-ultradifferentiable functions

Let \Omega_1 and \Omega_2 be non empty open subsets of \mathbb R^r and \mathbb R^s respectively and let \omega_1 and \omega_2 be weights. We introduce the spaces of ultradifferentiable functions \mathcal{E}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2), \mathcal{D}_{(\omega_1,\omega_2)}(\Omega_1 \...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Belgian Mathematical Society, Simon Stevin Simon Stevin, 2008-05, Vol.15 (4), p.645-662
Hauptverfasser: Schmets, Jean, Valdivia, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \Omega_1 and \Omega_2 be non empty open subsets of \mathbb R^r and \mathbb R^s respectively and let \omega_1 and \omega_2 be weights. We introduce the spaces of ultradifferentiable functions \mathcal{E}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2), \mathcal{D}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2), \mathcal{E}_{\{\omega_1,\omega_2\}}(\Omega_1 \times \Omega_2) and \mathcal{D}_{\{\omega_1,\omega_2\}}(\Omega_1 \times \Omega_2), study their locally convex properties, examine the structure of their elements and also consider their links with the tensor products \mathcal{E}_{*}(\Omega_1) \otimes \mathcal{E}_{*}(\Omega_2) and \mathcal{D}_{*}(\Omega_1) \otimes \mathcal{D}_{*}(\Omega_2) endowed with the \varepsilon-, \pi- or i-topologies. This leads to kernel theorems.
ISSN:1370-1444
2034-1970
DOI:10.36045/bbms/1225893945