About spaces of $\omega_1$-$\omega_2$-ultradifferentiable functions
Let \Omega_1 and \Omega_2 be non empty open subsets of \mathbb R^r and \mathbb R^s respectively and let \omega_1 and \omega_2 be weights. We introduce the spaces of ultradifferentiable functions \mathcal{E}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2), \mathcal{D}_{(\omega_1,\omega_2)}(\Omega_1 \...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Belgian Mathematical Society, Simon Stevin Simon Stevin, 2008-05, Vol.15 (4), p.645-662 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \Omega_1 and \Omega_2 be non empty open subsets of \mathbb R^r and \mathbb R^s respectively
and let \omega_1 and \omega_2 be weights.
We introduce the spaces of ultradifferentiable functions \mathcal{E}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2),
\mathcal{D}_{(\omega_1,\omega_2)}(\Omega_1 \times \Omega_2),
\mathcal{E}_{\{\omega_1,\omega_2\}}(\Omega_1 \times \Omega_2)
and \mathcal{D}_{\{\omega_1,\omega_2\}}(\Omega_1 \times \Omega_2),
study their locally convex properties, examine
the structure of their elements and also consider their links with the tensor products
\mathcal{E}_{*}(\Omega_1) \otimes \mathcal{E}_{*}(\Omega_2)
and \mathcal{D}_{*}(\Omega_1) \otimes \mathcal{D}_{*}(\Omega_2)
endowed with the \varepsilon-, \pi- or i-topologies.
This leads to kernel theorems. |
---|---|
ISSN: | 1370-1444 2034-1970 |
DOI: | 10.36045/bbms/1225893945 |