The two smallest minimal blocking sets of $\q(2n,3)$, $n \geqslant 3
We describe the two smallest minimal blocking sets of {\rm Q}(2n,3), n\geqslant 3. To obtain these results, we use the characterization of the smallest minimal blocking sets of {\rm Q}(6,3), different from an ovoid. We also present some geometrical properties of ovoids of {\rm Q}(6,q), q odd.
Gespeichert in:
Veröffentlicht in: | Bulletin of the Belgian Mathematical Society, Simon Stevin Simon Stevin, 2006-01, Vol.12 (5), p.735-742 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe the two smallest minimal blocking sets of {\rm Q}(2n,3), n\geqslant
3. To obtain these results, we use the characterization of the smallest minimal
blocking sets of {\rm Q}(6,3), different from an ovoid. We also present some geometrical properties of ovoids of
{\rm Q}(6,q), q odd. |
---|---|
ISSN: | 1370-1444 2034-1970 |
DOI: | 10.36045/bbms/1136902611 |