Combinatorial Algebra for second-quantized Quantum Theory
We describe an algebra \mathcal{G} of diagrams that faithfully gives a diagrammatic representation of the structures of both the Heisenberg–Weyl algebra \mathcal{H} – the associative algebra of the creation and annihilation operators of quantum mechanics – and \mathcal{U}(\mathcal{L}_{\mathcal{H}}),...
Gespeichert in:
Veröffentlicht in: | Advances in theoretical and mathematical physics 2010, Vol.14 (4), p.1209-1243 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe an algebra \mathcal{G} of diagrams that faithfully gives a diagrammatic representation of the structures of both the Heisenberg–Weyl algebra \mathcal{H} – the associative algebra of the creation and annihilation operators
of quantum mechanics – and \mathcal{U}(\mathcal{L}_{\mathcal{H}}), the enveloping algebra of the Heisenberg Lie algebra \mathcal{L}_{\mathcal{H}}. We show explicitly how \mathcal{G} may be endowed with
the structure of a Hopf algebra, which is also mirrored in the structure
of \mathcal{U}(\mathcal{L}_{\mathcal{H}}). While both \mathcal{H} and \mathcal{U}(\mathcal{L}_{\mathcal{H}}) are images of \mathcal{G}, the algebra \mathcal{G} has
a richer structure and therefore embodies a finer combinatorial realization of the creation-annihilation system, of which it provides a concrete
model. |
---|---|
ISSN: | 1095-0761 1095-0753 |
DOI: | 10.4310/ATMP.2010.v14.n4.a5 |