ASYMPTOTICALLY DISTRIBUTION-FREE GOODNESS-OF-FIT TESTING FOR TAIL COPULAS

Let (X₁, Y₁),..., (Xn, Yn) be an i.i.d. sample from a bivariate distribution function that lies in the max-domain of attraction of an extreme value distribution. The asymptotic joint distribution of the standardized componentwise maxima $V_{i = 1}^n$ Xi and $V_{i = 1}^n$ Yi is then characterized by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2015-04, Vol.43 (2), p.878-902
Hauptverfasser: Can, Sami Umut, Einmahl, John H. J., Khmaladze, Estate V., Laeven, Roger J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (X₁, Y₁),..., (Xn, Yn) be an i.i.d. sample from a bivariate distribution function that lies in the max-domain of attraction of an extreme value distribution. The asymptotic joint distribution of the standardized componentwise maxima $V_{i = 1}^n$ Xi and $V_{i = 1}^n$ Yi is then characterized by the marginal extreme value indices and the tail copula R. We propose a procedure for constructing asymptotically distribution-free goodness-of-fit tests for the tail copula R. The procedure is based on a transformation of a suitable empirical process derived from a semi-parametric estimator of R. The transformed empirical process converges weakly to a standard Wiener process, paving the way for a multitude of asymptotically distribution-free goodness-of-fit tests. We also extend our results to the m-variate (m > 2) case. In a simulation study we show that the limit theorems provide good approximations for finite samples and that tests based on the transformed empirical process have high power.
ISSN:0090-5364
2168-8966
DOI:10.1214/14-AOS1304