ON THE APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION FOR DIFFUSION PROCESSES

The transition density of a diffusion process does not admit an explicit expression in general, which prevents the full maximum likelihood estimation (MLE) based on discretely observed sample paths. Aït-Sahalia [J. Finance 54 (1999) 1361-1395; Econometrica 70 (2002) 223-262] proposed asymptotic expa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2011-12, Vol.39 (6), p.2820-2851
Hauptverfasser: Chang, Jinyuan, Chen, Song Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transition density of a diffusion process does not admit an explicit expression in general, which prevents the full maximum likelihood estimation (MLE) based on discretely observed sample paths. Aït-Sahalia [J. Finance 54 (1999) 1361-1395; Econometrica 70 (2002) 223-262] proposed asymptotic expansions to the transition densities of diffusion processes, which lead to an approximate maximum likelihood estimation (AMLE) for parameters. Built on Aït-Sahalia's [Econometrica 70 (2002) 223-262; Ann. Statist. 36 (2008) 906-937] proposal and analysis on the AMLE, we establish the consistency and convergence rate of the AMLE, which reveal the roles played by the number of terms used in the asymptotic density expansions and the sampling interval between successive observations. We find conditions under which the AMLE has the same asymptotic distribution as that of the full MLE. A first order approximation to the Fisher information matrix is proposed.
ISSN:0090-5364
2168-8966
DOI:10.1214/11-AOS922