A NOTE ON THE DE LA GARZA PHENOMENON FOR LOCALLY OPTIMAL DESIGNS

The celebrated de la Garza phenomenon states that for a polynomial regression model of degree p — 1 any optimal design can be based on at most p design points. In a remarkable paper, Yang [Ann. Statist. 38 (2010) 2499-2524] showed that this phenomenon exists in many locally optimal design problems f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2011-04, Vol.39 (2), p.1266-1281
Hauptverfasser: Dette, Holger, Melas, Viatcheslav B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The celebrated de la Garza phenomenon states that for a polynomial regression model of degree p — 1 any optimal design can be based on at most p design points. In a remarkable paper, Yang [Ann. Statist. 38 (2010) 2499-2524] showed that this phenomenon exists in many locally optimal design problems for nonlinear models. In the present note, we present a different view point on these findings using results about moment theory and Chebyshev systems. In particular, we show that this phenomenon occurs in an even larger class of models than considered so far.
ISSN:0090-5364
2168-8966
DOI:10.1214/11-AOS875