CONTOUR PROJECTED DIMENSION REDUCTION

In regression analysis, we employ contour projection (CP) to develop a new dimension reduction theory. Accordingly, we introduce the notions of the central contour subspace and generalized contour subspace. We show that both of their structural dimensions are no larger than that of the central subsp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2009-12, Vol.37 (6B), p.3743-3778
Hauptverfasser: Luo, Ronghua, Wang, Hansheng, Tsai, Chih-Ling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In regression analysis, we employ contour projection (CP) to develop a new dimension reduction theory. Accordingly, we introduce the notions of the central contour subspace and generalized contour subspace. We show that both of their structural dimensions are no larger than that of the central subspace Cook [Regression Graphics (1998b) Wiley]. Furthermore, we employ CP-sliced inverse regression, CP-sliced average variance estimation and CP-directional regression to estimate the generalized contour subspace, and we subsequently obtain their theoretical properties. Monte Carlo studies demonstrate that the three CP-based dimension reduction methods out-perform their corresponding non-CP approaches when the predictors have heavy-tailed elliptical distributions. An empirical example is also presented to illustrate the usefulness of the CP method.
ISSN:0090-5364
2168-8966
DOI:10.1214/08-AOS679