Statistical Aspects of the Fractional Stochastic Calculus

We apply the techniques of stochastic integration with respect to fractional Brownian motion and the theory of regularity and supremum estimation for stochastic processes to study the maximum likelihood estimator (MLE) for the drift parameter of stochastic processes satisfying stochastic equations d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2007-07, Vol.35 (3), p.1183-1212
Hauptverfasser: Tudor, Ciprian A., Viens, Frederi G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply the techniques of stochastic integration with respect to fractional Brownian motion and the theory of regularity and supremum estimation for stochastic processes to study the maximum likelihood estimator (MLE) for the drift parameter of stochastic processes satisfying stochastic equations driven by a fractional Brownian motion with any level of Hölder-regularity (any Hurst parameter). We prove existence and strong consistency of the MLE for linear and nonlinear equations. We also prove that a version of the MLE using only discrete observations is still a strongly consistent estimator.
ISSN:0090-5364
2168-8966
DOI:10.1214/009053606000001541