Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints

Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2007-04, Vol.35 (2), p.793-814
Hauptverfasser: Stufken, John, Tang, Boxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue 2
container_start_page 793
container_title The Annals of statistics
container_volume 35
creator Stufken, John
Tang, Boxin
description Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength d with d+2 constraints for any d and any run size $n=\lambda 2^{d}$. Our results not only give the number of nonisomorphic orthogonal arrays for given d and n, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of J-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.
doi_str_mv 10.1214/009053606000001325
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1183667294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25463578</jstor_id><sourcerecordid>25463578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-dc58d1137c72b11383636ee40fabaa95762530e82d79dbcdf6814fd186502b5e3</originalsourceid><addsrcrecordid>eNplkVtLwzAYhoMoOKd_QBCK4JVUc2jS5M5R5gEGu3DztmRpurV0zUxSx_69KSvzwty8kO_53u8EwC2CTwij5BlCASlhkMH-IYLpGRhhxHjMBWPnYNQDcSCSS3DlXB0gKhIyAl-Z2e4a7XU0bbutttJXpo1MGS32Jp7pH91Ec-s3Zm1a2UQTa-XB9eFPb3W79puoiPZVL484ykzrvJVV6901uChl4_TNoGOwfJ0usvd4Nn_7yCazWCU49XGhKC8QIqlK8SooJ4wwrRNYypWUgqYMUwI1x0UqipUqSsZRUhaIMwrximoyBi9H3501tVZed6qpinxnq620h9zIKs-Ws-F3EGlcjlAoxVIcdjAG9yeL7047n9ems2HaQAkmMEJYBAgfIWWNc1aXpxII5v0F8v8XCEkPg7N0Sjalla2q3F8mF5TwpO_g7sjVzht7imOaMEJTTn4BBHaOkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196921129</pqid></control><display><type>article</type><title>Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Project Euclid Complete</source><creator>Stufken, John ; Tang, Boxin</creator><creatorcontrib>Stufken, John ; Tang, Boxin</creatorcontrib><description>Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength d with d+2 constraints for any d and any run size $n=\lambda 2^{d}$. Our results not only give the number of nonisomorphic orthogonal arrays for given d and n, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of J-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/009053606000001325</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62K15 ; Arrays ; Combinatorics ; Combinatorics. Ordered structures ; Design resolution ; Designs and configurations ; Exact sciences and technology ; Experimental Design ; Factorial design ; Factorials ; fractional factorial design ; General topics ; Hadamard matrix ; Hadamard transform ; indicator function ; Indicator functions ; Inference ; Integers ; isomorphism ; J-characteristic ; Mathematical minima ; Mathematical models ; Mathematics ; Matrices ; minimum aberration ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Studies ; Variables</subject><ispartof>The Annals of statistics, 2007-04, Vol.35 (2), p.793-814</ispartof><rights>Copyright 2007 Institute of Mathematical Statistics</rights><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Apr 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-dc58d1137c72b11383636ee40fabaa95762530e82d79dbcdf6814fd186502b5e3</citedby><cites>FETCH-LOGICAL-c427t-dc58d1137c72b11383636ee40fabaa95762530e82d79dbcdf6814fd186502b5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25463578$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25463578$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18953844$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stufken, John</creatorcontrib><creatorcontrib>Tang, Boxin</creatorcontrib><title>Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints</title><title>The Annals of statistics</title><description>Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength d with d+2 constraints for any d and any run size $n=\lambda 2^{d}$. Our results not only give the number of nonisomorphic orthogonal arrays for given d and n, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of J-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.</description><subject>62K15</subject><subject>Arrays</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Design resolution</subject><subject>Designs and configurations</subject><subject>Exact sciences and technology</subject><subject>Experimental Design</subject><subject>Factorial design</subject><subject>Factorials</subject><subject>fractional factorial design</subject><subject>General topics</subject><subject>Hadamard matrix</subject><subject>Hadamard transform</subject><subject>indicator function</subject><subject>Indicator functions</subject><subject>Inference</subject><subject>Integers</subject><subject>isomorphism</subject><subject>J-characteristic</subject><subject>Mathematical minima</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Matrices</subject><subject>minimum aberration</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Studies</subject><subject>Variables</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNplkVtLwzAYhoMoOKd_QBCK4JVUc2jS5M5R5gEGu3DztmRpurV0zUxSx_69KSvzwty8kO_53u8EwC2CTwij5BlCASlhkMH-IYLpGRhhxHjMBWPnYNQDcSCSS3DlXB0gKhIyAl-Z2e4a7XU0bbutttJXpo1MGS32Jp7pH91Ec-s3Zm1a2UQTa-XB9eFPb3W79puoiPZVL484ykzrvJVV6901uChl4_TNoGOwfJ0usvd4Nn_7yCazWCU49XGhKC8QIqlK8SooJ4wwrRNYypWUgqYMUwI1x0UqipUqSsZRUhaIMwrximoyBi9H3501tVZed6qpinxnq620h9zIKs-Ws-F3EGlcjlAoxVIcdjAG9yeL7047n9ems2HaQAkmMEJYBAgfIWWNc1aXpxII5v0F8v8XCEkPg7N0Sjalla2q3F8mF5TwpO_g7sjVzht7imOaMEJTTn4BBHaOkA</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Stufken, John</creator><creator>Tang, Boxin</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20070401</creationdate><title>Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints</title><author>Stufken, John ; Tang, Boxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-dc58d1137c72b11383636ee40fabaa95762530e82d79dbcdf6814fd186502b5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>62K15</topic><topic>Arrays</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Design resolution</topic><topic>Designs and configurations</topic><topic>Exact sciences and technology</topic><topic>Experimental Design</topic><topic>Factorial design</topic><topic>Factorials</topic><topic>fractional factorial design</topic><topic>General topics</topic><topic>Hadamard matrix</topic><topic>Hadamard transform</topic><topic>indicator function</topic><topic>Indicator functions</topic><topic>Inference</topic><topic>Integers</topic><topic>isomorphism</topic><topic>J-characteristic</topic><topic>Mathematical minima</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Matrices</topic><topic>minimum aberration</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Studies</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stufken, John</creatorcontrib><creatorcontrib>Tang, Boxin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stufken, John</au><au>Tang, Boxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints</atitle><jtitle>The Annals of statistics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>35</volume><issue>2</issue><spage>793</spage><epage>814</epage><pages>793-814</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength d with d+2 constraints for any d and any run size $n=\lambda 2^{d}$. Our results not only give the number of nonisomorphic orthogonal arrays for given d and n, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of J-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009053606000001325</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2007-04, Vol.35 (2), p.793-814
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1183667294
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Project Euclid Complete
subjects 62K15
Arrays
Combinatorics
Combinatorics. Ordered structures
Design resolution
Designs and configurations
Exact sciences and technology
Experimental Design
Factorial design
Factorials
fractional factorial design
General topics
Hadamard matrix
Hadamard transform
indicator function
Indicator functions
Inference
Integers
isomorphism
J-characteristic
Mathematical minima
Mathematical models
Mathematics
Matrices
minimum aberration
Probability and statistics
Sciences and techniques of general use
Statistics
Studies
Variables
title Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Enumeration%20of%20Two-Level%20Orthogonal%20Arrays%20of%20Strength%20d%20with%20d+2%20Constraints&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Stufken,%20John&rft.date=2007-04-01&rft.volume=35&rft.issue=2&rft.spage=793&rft.epage=814&rft.pages=793-814&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/009053606000001325&rft_dat=%3Cjstor_proje%3E25463578%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196921129&rft_id=info:pmid/&rft_jstor_id=25463578&rfr_iscdi=true