Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints

Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2007-04, Vol.35 (2), p.793-814
Hauptverfasser: Stufken, John, Tang, Boxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength d with d+2 constraints for any d and any run size $n=\lambda 2^{d}$. Our results not only give the number of nonisomorphic orthogonal arrays for given d and n, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of J-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.
ISSN:0090-5364
2168-8966
DOI:10.1214/009053606000001325