Complete Enumeration of Two-Level Orthogonal Arrays of Strength d with d+2 Constraints
Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomo...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2007-04, Vol.35 (2), p.793-814 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. In this paper, we provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength d with d+2 constraints for any d and any run size $n=\lambda 2^{d}$. Our results not only give the number of nonisomorphic orthogonal arrays for given d and n, but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of J-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/009053606000001325 |