Fast Learning Rates for Plug-In Classifiers

It has been recently shown that, under the margin (or low noise) assumption, there exist classifiers attaining fast rates of convergence of the excess Bayes risk, that is, rates faster than $n^{-1/2}$. The work on this subject has suggested the following two conjectures: (i) the best achievable fast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2007-04, Vol.35 (2), p.608-633
Hauptverfasser: Audibert, Jean-Yves, Tsybakov, Alexandre B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been recently shown that, under the margin (or low noise) assumption, there exist classifiers attaining fast rates of convergence of the excess Bayes risk, that is, rates faster than $n^{-1/2}$. The work on this subject has suggested the following two conjectures: (i) the best achievable fast rate is of the order n⁻¹, and (ii) the plug-in classifiers generally converge more slowly than the classifiers based on empirical risk minimization. We show that both conjectures are not correct. In particular, we construct plug-in classifiers that can achieve not only fast, but also super-fast rates, that is, rates faster than n⁻¹. We establish minimax lower bounds showing that the obtained rates cannot be improved.
ISSN:0090-5364
2168-8966
DOI:10.1214/009053606000001217