A Large Deviation Result for Parameter Estimators and its Application to Nonlinear Regression Analysis

Elaborating on the work of Ibragimov and Has'minskii (1981) we prove a law of large deviations (LLD) for M-estimators, i.e., those estimators which maximize a functional, continuous in the parameter, of the observations. This LLD is applied, using the results of Petrov (1975), to the problem of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1987-09, Vol.15 (3), p.1031-1049
Hauptverfasser: Sieders, Arthur, Dzhaparidze, Kacha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elaborating on the work of Ibragimov and Has'minskii (1981) we prove a law of large deviations (LLD) for M-estimators, i.e., those estimators which maximize a functional, continuous in the parameter, of the observations. This LLD is applied, using the results of Petrov (1975), to the problem of parametrical nonlinear regression in the situation of discrete time, independent errors and regression functions which are continuous in the parameter. This improves a result of Prakasa Rao (1984).
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176350491