Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators

Consider a class P=Pθ:θ∈Θ of probability measures on a measurable space (X,A), dominated by a σ -finite measure μ. Let fθ=dPθ/dμ, θ inΘ, and let θnbe a maximum likelihood estimator based on n independent observations from Pθ0 , θ0∈Θ. We use results from empirical process theory to obtain convergence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1993-03, Vol.21 (1), p.14-44
1. Verfasser: van de Geer, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a class P=Pθ:θ∈Θ of probability measures on a measurable space (X,A), dominated by a σ -finite measure μ. Let fθ=dPθ/dμ, θ inΘ, and let θnbe a maximum likelihood estimator based on n independent observations from Pθ0 , θ0∈Θ. We use results from empirical process theory to obtain convergence for the Hellinger distance h(fθ̂n , fθ0 ), under certain entropy conditions on the class of densities fθ:θ∈Θ The examples we present are a model with interval censored observations, smooth densities, monotone densities and convolution models. In most examples, the convexity of the class of densities is of special importance.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176349013