Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators
Consider a class P=Pθ:θ∈Θ of probability measures on a measurable space (X,A), dominated by a σ -finite measure μ. Let fθ=dPθ/dμ, θ inΘ, and let θnbe a maximum likelihood estimator based on n independent observations from Pθ0 , θ0∈Θ. We use results from empirical process theory to obtain convergence...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1993-03, Vol.21 (1), p.14-44 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a class P=Pθ:θ∈Θ of probability measures on a measurable space (X,A), dominated by a σ -finite measure μ. Let fθ=dPθ/dμ, θ inΘ, and let θnbe a maximum likelihood estimator based on n independent observations from Pθ0
, θ0∈Θ. We use results from empirical process theory to obtain convergence for the Hellinger distance h(fθ̂n
, fθ0
), under certain entropy conditions on the class of densities fθ:θ∈Θ The examples we present are a model with interval censored observations, smooth densities, monotone densities and convolution models. In most examples, the convexity of the class of densities is of special importance. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/aos/1176349013 |