A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training

A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1992-03, Vol.20 (1), p.608-613
1. Verfasser: Jones, Lee K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 1
container_start_page 608
container_title The Annals of statistics
container_volume 20
creator Jones, Lee K.
description A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.
doi_str_mv 10.1214/aos/1176348546
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2242184</jstor_id><sourcerecordid>2242184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a809898530973e50dce9ac40a9a13a1eb4399a8946331ec58a6f793abc481aa33</originalsourceid><addsrcrecordid>eNplkctOwzAQRS0EEqWwZcXCC7Ypduyk9o6q4iVVgHiso6k7qVzSOBqnPL6BnyalVVmwuvKdOdeeMWOnUgxkKvUFhHgh5TBX2mQ632O9VOYmMTbP91lPCCuSTOX6kB3FuBBCZFarHvse8We_bCrkE1wugYea3xDi7IuPmobCp19C6zvT1_zWV1Oklj834JBDPePjUL8jzbHuzk_QYuRlIP5IYYHul3pcUVz5lj_hnDDGtbXm7nFFUHXSfgR64y8Evvb1_JgdlFBFPNlqn71eX72Mb5PJw83deDRJnDJpm4AR1liTKWGHCjMxc2jBaQEWpAKJU62sBWN1rpRElxnIy6FVMHXaSACl-uxyk9tsXoorV_lZ0VA3LH0VAXwxfp1s3a10yy3-lttFDDYRjkKMhOWOlqJY_8Z_4Hx7J0QHVUlQOx93VKakSLtx-uxs07aIbaBdOU11Ko1WP1iVlkE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Jones, Lee K.</creator><creatorcontrib>Jones, Lee K.</creatorcontrib><description>A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176348546</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62H99 ; Approximation ; Artificial neural networks ; Exact sciences and technology ; greedy expansion ; Hilbert spaces ; Mathematical foundations ; Mathematical functions ; Mathematics ; neural network ; Perceptron convergence procedure ; Probability and statistics ; Projection pursuit ; Sciences and techniques of general use ; Short Communications ; Statistics</subject><ispartof>The Annals of statistics, 1992-03, Vol.20 (1), p.608-613</ispartof><rights>Copyright 1992 Institute of Mathematical Statistics</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a809898530973e50dce9ac40a9a13a1eb4399a8946331ec58a6f793abc481aa33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2242184$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2242184$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5310297$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Lee K.</creatorcontrib><title>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</title><title>The Annals of statistics</title><description>A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.</description><subject>62H99</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Exact sciences and technology</subject><subject>greedy expansion</subject><subject>Hilbert spaces</subject><subject>Mathematical foundations</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>neural network</subject><subject>Perceptron convergence procedure</subject><subject>Probability and statistics</subject><subject>Projection pursuit</subject><subject>Sciences and techniques of general use</subject><subject>Short Communications</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkctOwzAQRS0EEqWwZcXCC7Ypduyk9o6q4iVVgHiso6k7qVzSOBqnPL6BnyalVVmwuvKdOdeeMWOnUgxkKvUFhHgh5TBX2mQ632O9VOYmMTbP91lPCCuSTOX6kB3FuBBCZFarHvse8We_bCrkE1wugYea3xDi7IuPmobCp19C6zvT1_zWV1Oklj834JBDPePjUL8jzbHuzk_QYuRlIP5IYYHul3pcUVz5lj_hnDDGtbXm7nFFUHXSfgR64y8Evvb1_JgdlFBFPNlqn71eX72Mb5PJw83deDRJnDJpm4AR1liTKWGHCjMxc2jBaQEWpAKJU62sBWN1rpRElxnIy6FVMHXaSACl-uxyk9tsXoorV_lZ0VA3LH0VAXwxfp1s3a10yy3-lttFDDYRjkKMhOWOlqJY_8Z_4Hx7J0QHVUlQOx93VKakSLtx-uxs07aIbaBdOU11Ko1WP1iVlkE</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Jones, Lee K.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920301</creationdate><title>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</title><author>Jones, Lee K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a809898530973e50dce9ac40a9a13a1eb4399a8946331ec58a6f793abc481aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>62H99</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Exact sciences and technology</topic><topic>greedy expansion</topic><topic>Hilbert spaces</topic><topic>Mathematical foundations</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>neural network</topic><topic>Perceptron convergence procedure</topic><topic>Probability and statistics</topic><topic>Projection pursuit</topic><topic>Sciences and techniques of general use</topic><topic>Short Communications</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Lee K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Lee K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</atitle><jtitle>The Annals of statistics</jtitle><date>1992-03-01</date><risdate>1992</risdate><volume>20</volume><issue>1</issue><spage>608</spage><epage>613</epage><pages>608-613</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176348546</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 1992-03, Vol.20 (1), p.608-613
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348546
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62H99
Approximation
Artificial neural networks
Exact sciences and technology
greedy expansion
Hilbert spaces
Mathematical foundations
Mathematical functions
Mathematics
neural network
Perceptron convergence procedure
Probability and statistics
Projection pursuit
Sciences and techniques of general use
Short Communications
Statistics
title A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Lemma%20on%20Greedy%20Approximation%20in%20Hilbert%20Space%20and%20Convergence%20Rates%20for%20Projection%20Pursuit%20Regression%20and%20Neural%20Network%20Training&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Jones,%20Lee%20K.&rft.date=1992-03-01&rft.volume=20&rft.issue=1&rft.spage=608&rft.epage=613&rft.pages=608-613&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176348546&rft_dat=%3Cjstor_proje%3E2242184%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2242184&rfr_iscdi=true