A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training
A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projectio...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1992-03, Vol.20 (1), p.608-613 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 1 |
container_start_page | 608 |
container_title | The Annals of statistics |
container_volume | 20 |
creator | Jones, Lee K. |
description | A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion. |
doi_str_mv | 10.1214/aos/1176348546 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2242184</jstor_id><sourcerecordid>2242184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a809898530973e50dce9ac40a9a13a1eb4399a8946331ec58a6f793abc481aa33</originalsourceid><addsrcrecordid>eNplkctOwzAQRS0EEqWwZcXCC7Ypduyk9o6q4iVVgHiso6k7qVzSOBqnPL6BnyalVVmwuvKdOdeeMWOnUgxkKvUFhHgh5TBX2mQ632O9VOYmMTbP91lPCCuSTOX6kB3FuBBCZFarHvse8We_bCrkE1wugYea3xDi7IuPmobCp19C6zvT1_zWV1Oklj834JBDPePjUL8jzbHuzk_QYuRlIP5IYYHul3pcUVz5lj_hnDDGtbXm7nFFUHXSfgR64y8Evvb1_JgdlFBFPNlqn71eX72Mb5PJw83deDRJnDJpm4AR1liTKWGHCjMxc2jBaQEWpAKJU62sBWN1rpRElxnIy6FVMHXaSACl-uxyk9tsXoorV_lZ0VA3LH0VAXwxfp1s3a10yy3-lttFDDYRjkKMhOWOlqJY_8Z_4Hx7J0QHVUlQOx93VKakSLtx-uxs07aIbaBdOU11Ko1WP1iVlkE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Jones, Lee K.</creator><creatorcontrib>Jones, Lee K.</creatorcontrib><description>A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/aos/1176348546</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62H99 ; Approximation ; Artificial neural networks ; Exact sciences and technology ; greedy expansion ; Hilbert spaces ; Mathematical foundations ; Mathematical functions ; Mathematics ; neural network ; Perceptron convergence procedure ; Probability and statistics ; Projection pursuit ; Sciences and techniques of general use ; Short Communications ; Statistics</subject><ispartof>The Annals of statistics, 1992-03, Vol.20 (1), p.608-613</ispartof><rights>Copyright 1992 Institute of Mathematical Statistics</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a809898530973e50dce9ac40a9a13a1eb4399a8946331ec58a6f793abc481aa33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2242184$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2242184$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5310297$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Lee K.</creatorcontrib><title>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</title><title>The Annals of statistics</title><description>A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.</description><subject>62H99</subject><subject>Approximation</subject><subject>Artificial neural networks</subject><subject>Exact sciences and technology</subject><subject>greedy expansion</subject><subject>Hilbert spaces</subject><subject>Mathematical foundations</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>neural network</subject><subject>Perceptron convergence procedure</subject><subject>Probability and statistics</subject><subject>Projection pursuit</subject><subject>Sciences and techniques of general use</subject><subject>Short Communications</subject><subject>Statistics</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNplkctOwzAQRS0EEqWwZcXCC7Ypduyk9o6q4iVVgHiso6k7qVzSOBqnPL6BnyalVVmwuvKdOdeeMWOnUgxkKvUFhHgh5TBX2mQ632O9VOYmMTbP91lPCCuSTOX6kB3FuBBCZFarHvse8We_bCrkE1wugYea3xDi7IuPmobCp19C6zvT1_zWV1Oklj834JBDPePjUL8jzbHuzk_QYuRlIP5IYYHul3pcUVz5lj_hnDDGtbXm7nFFUHXSfgR64y8Evvb1_JgdlFBFPNlqn71eX72Mb5PJw83deDRJnDJpm4AR1liTKWGHCjMxc2jBaQEWpAKJU62sBWN1rpRElxnIy6FVMHXaSACl-uxyk9tsXoorV_lZ0VA3LH0VAXwxfp1s3a10yy3-lttFDDYRjkKMhOWOlqJY_8Z_4Hx7J0QHVUlQOx93VKakSLtx-uxs07aIbaBdOU11Ko1WP1iVlkE</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Jones, Lee K.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19920301</creationdate><title>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</title><author>Jones, Lee K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a809898530973e50dce9ac40a9a13a1eb4399a8946331ec58a6f793abc481aa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>62H99</topic><topic>Approximation</topic><topic>Artificial neural networks</topic><topic>Exact sciences and technology</topic><topic>greedy expansion</topic><topic>Hilbert spaces</topic><topic>Mathematical foundations</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>neural network</topic><topic>Perceptron convergence procedure</topic><topic>Probability and statistics</topic><topic>Projection pursuit</topic><topic>Sciences and techniques of general use</topic><topic>Short Communications</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Lee K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Lee K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training</atitle><jtitle>The Annals of statistics</jtitle><date>1992-03-01</date><risdate>1992</risdate><volume>20</volume><issue>1</issue><spage>608</spage><epage>613</epage><pages>608-613</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aos/1176348546</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 1992-03, Vol.20 (1), p.608-613 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1176348546 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 62H99 Approximation Artificial neural networks Exact sciences and technology greedy expansion Hilbert spaces Mathematical foundations Mathematical functions Mathematics neural network Perceptron convergence procedure Probability and statistics Projection pursuit Sciences and techniques of general use Short Communications Statistics |
title | A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A44%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Lemma%20on%20Greedy%20Approximation%20in%20Hilbert%20Space%20and%20Convergence%20Rates%20for%20Projection%20Pursuit%20Regression%20and%20Neural%20Network%20Training&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Jones,%20Lee%20K.&rft.date=1992-03-01&rft.volume=20&rft.issue=1&rft.spage=608&rft.epage=613&rft.pages=608-613&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/aos/1176348546&rft_dat=%3Cjstor_proje%3E2242184%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2242184&rfr_iscdi=true |