A Simple Lemma on Greedy Approximation in Hilbert Space and Convergence Rates for Projection Pursuit Regression and Neural Network Training

A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1992-03, Vol.20 (1), p.608-613
1. Verfasser: Jones, Lee K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general convergence criterion for certain iterative sequences in Hilbert space is presented. For an important subclass of these sequences, estimates of the rate of convergence are given. Under very mild assumptions these results establish an$O(1/ \sqrt n)$nonsampling convergence rate for projection pursuit regression and neural network training; where n represents the number of ridge functions, neurons or coefficients in a greedy basis expansion.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176348546