Asymptotic Properties of Kernel Estimators Based on Local Medians
The desire to make nonparametric regression robust leads to the problem of conditional median function estimation. Under appropriate regularity conditions, a sequence of local median estimators can be chosen to achieve the optimal rate of convergence n-1/(2+d)both pointwise and in the$L^q (1 \leq q...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1989-06, Vol.17 (2), p.606-617 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The desire to make nonparametric regression robust leads to the problem of conditional median function estimation. Under appropriate regularity conditions, a sequence of local median estimators can be chosen to achieve the optimal rate of convergence n-1/(2+d)both pointwise and in the$L^q (1 \leq q < \infty)$norm restricted to a compact. It can also be chosen to achieve the optimal rate of convergence (n-1log n)1/(2+d)in the L∞norm restricted to a compact. These results also constitute an answer to an open question of Stone. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/aos/1176347128 |