Asymptotic Properties of Kernel Estimators Based on Local Medians

The desire to make nonparametric regression robust leads to the problem of conditional median function estimation. Under appropriate regularity conditions, a sequence of local median estimators can be chosen to achieve the optimal rate of convergence n-1/(2+d)both pointwise and in the$L^q (1 \leq q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1989-06, Vol.17 (2), p.606-617
1. Verfasser: Truong, Young K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The desire to make nonparametric regression robust leads to the problem of conditional median function estimation. Under appropriate regularity conditions, a sequence of local median estimators can be chosen to achieve the optimal rate of convergence n-1/(2+d)both pointwise and in the$L^q (1 \leq q < \infty)$norm restricted to a compact. It can also be chosen to achieve the optimal rate of convergence (n-1log n)1/(2+d)in the L∞norm restricted to a compact. These results also constitute an answer to an open question of Stone.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176347128