A Note on Selecting Parametric Models in Bayesian Inference

This note is concerned with how to replace assessment of a "true" prior on a nonparametric family of distributions--which is usually infeasible--by assessment of an approximating prior with support in a parametrized subfamily, in such a way that the posterior derived from the parametric mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1984-06, Vol.12 (2), p.751-757
1. Verfasser: Krasker, William S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This note is concerned with how to replace assessment of a "true" prior on a nonparametric family of distributions--which is usually infeasible--by assessment of an approximating prior with support in a parametrized subfamily, in such a way that the posterior derived from the parametric model is close to the "true" posterior. In general it is not sufficient that the approximating prior be close to the true prior in the sense of weak convergence, and we characterize the additional aspect of the true prior that must be considered explicitly.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176346521