Testing Whether New is Better than Used with Randomly Censored Data
A life distribution F, with survival function$\bar{F} \equiv 1 - F$, is new better than used (NBU) if F̄(x + y) ≤ F̄(x)F̄(y) for all x, y ≥ 0. We propose a test of H0: F is exponential, versus H1: F is NBU, but not exponential, based on a randomly censored sample of size n from F. Our test statistic...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1983-03, Vol.11 (1), p.267-274 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A life distribution F, with survival function$\bar{F} \equiv 1 - F$, is new better than used (NBU) if F̄(x + y) ≤ F̄(x)F̄(y) for all x, y ≥ 0. We propose a test of H0: F is exponential, versus H1: F is NBU, but not exponential, based on a randomly censored sample of size n from F. Our test statistic is Jc
n= ∫ ∫ F̄n(x + y) dFn(x) dFn(y), where Fnis the Kaplan-Meier estimator. Under mild regularity on the amount of censoring, the asymptotic normality of Jc
n, suitably normalized, is established. Then using a consistent estimator of the null standard deviation of n1/2Jc
n, an asymptotically exact test is obtained. We also study, using tests for the censored and uncensored models, the efficiency loss due to the presence of censoring. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/aos/1176346077 |