Large Sample Theory for U-Statistics and Tests of Fit
Let Xni, i = 1, ⋯, n be i.i.d. random variables on an arbitrary measurable space (X, B). Suppose L(Xni) = Qn1, i = 1, ⋯, n and let P0be a fixed probability measure on (X, B). We consider limiting distribution theory for U-statistics Tn= n-1∑i ≠ jQ(Xni, Xnj) (1) under conditions which imply the produ...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1977-01, Vol.5 (1), p.110-123 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Xni, i = 1, ⋯, n be i.i.d. random variables on an arbitrary measurable space (X, B). Suppose L(Xni) = Qn1, i = 1, ⋯, n and let P0be a fixed probability measure on (X, B). We consider limiting distribution theory for U-statistics Tn= n-1∑i ≠ jQ(Xni, Xnj) (1) under conditions which imply the product measures Qn= Qn1× ⋯ × Qn1, n times, are contiguous to the product measures Pn= P0× ⋯ × P0, n times, and (2) for kernels Q which are symmetric, square-integrable$(\int Q^2(\bullet, \bullet) dP_0 \times P_0 < \infty)$and degenerate in a certain sense$(\int Q(\bullet, t)P_0(dt) = 0 \mathrm{a.e.} (P_0))$. Applications to chi-square and Cramer-von Mises tests for a simple hypothesis and Cramer-von Mises tests for the case when parameters have to be estimated, are given. A tail sensitive test for normality is introduced. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/aos/1176343744 |