Large Sample Theory for U-Statistics and Tests of Fit

Let Xni, i = 1, ⋯, n be i.i.d. random variables on an arbitrary measurable space (X, B). Suppose L(Xni) = Qn1, i = 1, ⋯, n and let P0be a fixed probability measure on (X, B). We consider limiting distribution theory for U-statistics Tn= n-1∑i ≠ jQ(Xni, Xnj) (1) under conditions which imply the produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1977-01, Vol.5 (1), p.110-123
1. Verfasser: Gregory, Gavin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Xni, i = 1, ⋯, n be i.i.d. random variables on an arbitrary measurable space (X, B). Suppose L(Xni) = Qn1, i = 1, ⋯, n and let P0be a fixed probability measure on (X, B). We consider limiting distribution theory for U-statistics Tn= n-1∑i ≠ jQ(Xni, Xnj) (1) under conditions which imply the product measures Qn= Qn1× ⋯ × Qn1, n times, are contiguous to the product measures Pn= P0× ⋯ × P0, n times, and (2) for kernels Q which are symmetric, square-integrable$(\int Q^2(\bullet, \bullet) dP_0 \times P_0 < \infty)$and degenerate in a certain sense$(\int Q(\bullet, t)P_0(dt) = 0 \mathrm{a.e.} (P_0))$. Applications to chi-square and Cramer-von Mises tests for a simple hypothesis and Cramer-von Mises tests for the case when parameters have to be estimated, are given. A tail sensitive test for normality is introduced.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176343744