An Optimum Design for Estimating the First Derivative

An optimum design of experiment for a class of estimates of the first derivative at 0 (used in stochastic approximation and density estimation) is shown to be equivalent to the problem of finding a point of minimum of the function Γ defined by$\Gamma (x) = \det\lbrack 1, x^3,\ldots, x^{2m-1} \rbrack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1995-08, Vol.23 (4), p.1234-1247
Hauptverfasser: Erickson, Roy V., Fabian, Vaclav, Marik, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An optimum design of experiment for a class of estimates of the first derivative at 0 (used in stochastic approximation and density estimation) is shown to be equivalent to the problem of finding a point of minimum of the function Γ defined by$\Gamma (x) = \det\lbrack 1, x^3,\ldots, x^{2m-1} \rbrack/\det\lbrack x, x^3,\ldots, x^{2m-1} \rbrack$on the set of all m-dimensional vectors with components satisfying$0 < x_1 < -x_2 < \cdots < (-1)^{m-1} x_m$and Π|xi| = 1. (In the determinants, 1 is the column vector with all components 1, and xihas components of x raised to the i-th power.) The minimum of Γ is shown to be m, and the point at which the minimum is attained is characterized by Chebyshev polynomials of the second kind.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1176324707