Saddlepoint Approximation for Moment Generating Functions of Truncated Random Variables

We consider the problem of approximating the moment generating function (MGF) of a truncated random variable in terms of the MGF of the underlying (i.e., untruncated) random variable. The purpose of approximating the MGF is to enable the application of saddlepoint approximations to certain distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2004-12, Vol.32 (6), p.2712-2730
Hauptverfasser: Butler, Ronald W., Andrew T. A. Wood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of approximating the moment generating function (MGF) of a truncated random variable in terms of the MGF of the underlying (i.e., untruncated) random variable. The purpose of approximating the MGF is to enable the application of saddlepoint approximations to certain distributions determined by truncated random variables. Two important statistical applications are the following: the approximation of certain multivariate cumulative distribution functions; and the approximation of passage time distributions in ion channel models which incorporate time interval omission. We derive two types of representation for the MGF of a truncated random variable. One of these representations is obtained by exponential tilting. The second type of representation, which has two versions, is referred to as an exponential convolution representation. Each representation motivates a different approximation. It turns out that each of the three approximations is extremely accurate in those cases "to which it is suited." Moreover, there is a simple rule of thumb for deciding which approximation to use in a given case, and if this rule is followed, then our numerical and theoretical results indicate that the resulting approximation will be extremely accurate.
ISSN:0090-5364
2168-8966
DOI:10.1214/009053604000000689