Martingale Transforms Goodness-of-Fit Tests in Regression Models

This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2004-06, Vol.32 (3), p.995-1034
Hauptverfasser: Khmaladze, Estate V., Koul, Hira L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1034
container_issue 3
container_start_page 995
container_title The Annals of statistics
container_volume 32
creator Khmaladze, Estate V.
Koul, Hira L.
description This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.
doi_str_mv 10.1214/009053604000000274
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1085408493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3448582</jstor_id><sourcerecordid>3448582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWB9_QFwMgsvRPGeSXaXYKrQI0q5DJo-SYTqpyXThvze1pS7M5pKT7557cwC4Q_AJYUSfIRSQkQpS-HtwTc_ACKOKl1xU1TkY7YEyE_QSXKXUZoYJSkZgvFBx8P1adbZYRtUnF-ImFbMQTG9TKoMrp34oljYNqfB98WnXMes-9MUiGNulG3DhVJfs7bFeg9X0dTl5K-cfs_fJy7zUFFdDWWusGy4YNdBw67AT0CiKcA2tQ04Z2OD9DanGUtoQbRhGijFFGi0ErjG5BuOD7zaG1urB7nTnjdxGv1HxWwbl5WQ1P6rHokKSCHJGIaeCZIuHk8XXLv9ItmEX-7y1RKISiEJRZwgfIB1DStG60wgE5T5r-T_r3PR4dFZJq87lILVPf52MM8E5z9z9gWvTEOLpnVDKGcfkB7PWhzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196914097</pqid></control><display><type>article</type><title>Martingale Transforms Goodness-of-Fit Tests in Regression Models</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Khmaladze, Estate V. ; Koul, Hira L.</creator><creatorcontrib>Khmaladze, Estate V. ; Koul, Hira L.</creatorcontrib><description>This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/009053604000000274</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G10 ; 62J02 ; Approximation ; Asymptotically distribution free ; Brownian bridge ; Brownian motion ; Distribution functions ; Distribution theory ; Estimators ; Exact sciences and technology ; General topics ; Linear regression ; Martingales ; Mathematical models ; Mathematics ; Monte Carlo simulation ; Nonparametric inference ; partial sum processes ; Partial sums ; Probability and statistics ; Probability theory and stochastic processes ; Regression analysis ; Sample size ; Sciences and techniques of general use ; Statistics ; Stochastic processes ; Testing</subject><ispartof>The Annals of statistics, 2004-06, Vol.32 (3), p.995-1034</ispartof><rights>Copyright 2004 Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</citedby><cites>FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3448582$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3448582$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15859888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khmaladze, Estate V.</creatorcontrib><creatorcontrib>Koul, Hira L.</creatorcontrib><title>Martingale Transforms Goodness-of-Fit Tests in Regression Models</title><title>The Annals of statistics</title><description>This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.</description><subject>62G10</subject><subject>62J02</subject><subject>Approximation</subject><subject>Asymptotically distribution free</subject><subject>Brownian bridge</subject><subject>Brownian motion</subject><subject>Distribution functions</subject><subject>Distribution theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Linear regression</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric inference</subject><subject>partial sum processes</subject><subject>Partial sums</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Testing</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkEtLAzEUhYMoWB9_QFwMgsvRPGeSXaXYKrQI0q5DJo-SYTqpyXThvze1pS7M5pKT7557cwC4Q_AJYUSfIRSQkQpS-HtwTc_ACKOKl1xU1TkY7YEyE_QSXKXUZoYJSkZgvFBx8P1adbZYRtUnF-ImFbMQTG9TKoMrp34oljYNqfB98WnXMes-9MUiGNulG3DhVJfs7bFeg9X0dTl5K-cfs_fJy7zUFFdDWWusGy4YNdBw67AT0CiKcA2tQ04Z2OD9DanGUtoQbRhGijFFGi0ErjG5BuOD7zaG1urB7nTnjdxGv1HxWwbl5WQ1P6rHokKSCHJGIaeCZIuHk8XXLv9ItmEX-7y1RKISiEJRZwgfIB1DStG60wgE5T5r-T_r3PR4dFZJq87lILVPf52MM8E5z9z9gWvTEOLpnVDKGcfkB7PWhzg</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Khmaladze, Estate V.</creator><creator>Koul, Hira L.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20040601</creationdate><title>Martingale Transforms Goodness-of-Fit Tests in Regression Models</title><author>Khmaladze, Estate V. ; Koul, Hira L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>62G10</topic><topic>62J02</topic><topic>Approximation</topic><topic>Asymptotically distribution free</topic><topic>Brownian bridge</topic><topic>Brownian motion</topic><topic>Distribution functions</topic><topic>Distribution theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Linear regression</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric inference</topic><topic>partial sum processes</topic><topic>Partial sums</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khmaladze, Estate V.</creatorcontrib><creatorcontrib>Koul, Hira L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khmaladze, Estate V.</au><au>Koul, Hira L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martingale Transforms Goodness-of-Fit Tests in Regression Models</atitle><jtitle>The Annals of statistics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>32</volume><issue>3</issue><spage>995</spage><epage>1034</epage><pages>995-1034</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009053604000000274</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2004-06, Vol.32 (3), p.995-1034
issn 0090-5364
2168-8966
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1085408493
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 62G10
62J02
Approximation
Asymptotically distribution free
Brownian bridge
Brownian motion
Distribution functions
Distribution theory
Estimators
Exact sciences and technology
General topics
Linear regression
Martingales
Mathematical models
Mathematics
Monte Carlo simulation
Nonparametric inference
partial sum processes
Partial sums
Probability and statistics
Probability theory and stochastic processes
Regression analysis
Sample size
Sciences and techniques of general use
Statistics
Stochastic processes
Testing
title Martingale Transforms Goodness-of-Fit Tests in Regression Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martingale%20Transforms%20Goodness-of-Fit%20Tests%20in%20Regression%20Models&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Khmaladze,%20Estate%20V.&rft.date=2004-06-01&rft.volume=32&rft.issue=3&rft.spage=995&rft.epage=1034&rft.pages=995-1034&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/009053604000000274&rft_dat=%3Cjstor_proje%3E3448582%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196914097&rft_id=info:pmid/&rft_jstor_id=3448582&rfr_iscdi=true