Martingale Transforms Goodness-of-Fit Tests in Regression Models
This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 2004-06, Vol.32 (3), p.995-1034 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1034 |
---|---|
container_issue | 3 |
container_start_page | 995 |
container_title | The Annals of statistics |
container_volume | 32 |
creator | Khmaladze, Estate V. Koul, Hira L. |
description | This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes. |
doi_str_mv | 10.1214/009053604000000274 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1085408493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3448582</jstor_id><sourcerecordid>3448582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWB9_QFwMgsvRPGeSXaXYKrQI0q5DJo-SYTqpyXThvze1pS7M5pKT7557cwC4Q_AJYUSfIRSQkQpS-HtwTc_ACKOKl1xU1TkY7YEyE_QSXKXUZoYJSkZgvFBx8P1adbZYRtUnF-ImFbMQTG9TKoMrp34oljYNqfB98WnXMes-9MUiGNulG3DhVJfs7bFeg9X0dTl5K-cfs_fJy7zUFFdDWWusGy4YNdBw67AT0CiKcA2tQ04Z2OD9DanGUtoQbRhGijFFGi0ErjG5BuOD7zaG1urB7nTnjdxGv1HxWwbl5WQ1P6rHokKSCHJGIaeCZIuHk8XXLv9ItmEX-7y1RKISiEJRZwgfIB1DStG60wgE5T5r-T_r3PR4dFZJq87lILVPf52MM8E5z9z9gWvTEOLpnVDKGcfkB7PWhzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196914097</pqid></control><display><type>article</type><title>Martingale Transforms Goodness-of-Fit Tests in Regression Models</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Khmaladze, Estate V. ; Koul, Hira L.</creator><creatorcontrib>Khmaladze, Estate V. ; Koul, Hira L.</creatorcontrib><description>This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/009053604000000274</identifier><identifier>CODEN: ASTSC7</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>62G10 ; 62J02 ; Approximation ; Asymptotically distribution free ; Brownian bridge ; Brownian motion ; Distribution functions ; Distribution theory ; Estimators ; Exact sciences and technology ; General topics ; Linear regression ; Martingales ; Mathematical models ; Mathematics ; Monte Carlo simulation ; Nonparametric inference ; partial sum processes ; Partial sums ; Probability and statistics ; Probability theory and stochastic processes ; Regression analysis ; Sample size ; Sciences and techniques of general use ; Statistics ; Stochastic processes ; Testing</subject><ispartof>The Annals of statistics, 2004-06, Vol.32 (3), p.995-1034</ispartof><rights>Copyright 2004 Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Jun 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</citedby><cites>FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3448582$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3448582$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15859888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Khmaladze, Estate V.</creatorcontrib><creatorcontrib>Koul, Hira L.</creatorcontrib><title>Martingale Transforms Goodness-of-Fit Tests in Regression Models</title><title>The Annals of statistics</title><description>This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.</description><subject>62G10</subject><subject>62J02</subject><subject>Approximation</subject><subject>Asymptotically distribution free</subject><subject>Brownian bridge</subject><subject>Brownian motion</subject><subject>Distribution functions</subject><subject>Distribution theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Linear regression</subject><subject>Martingales</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Monte Carlo simulation</subject><subject>Nonparametric inference</subject><subject>partial sum processes</subject><subject>Partial sums</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Regression analysis</subject><subject>Sample size</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Testing</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkEtLAzEUhYMoWB9_QFwMgsvRPGeSXaXYKrQI0q5DJo-SYTqpyXThvze1pS7M5pKT7557cwC4Q_AJYUSfIRSQkQpS-HtwTc_ACKOKl1xU1TkY7YEyE_QSXKXUZoYJSkZgvFBx8P1adbZYRtUnF-ImFbMQTG9TKoMrp34oljYNqfB98WnXMes-9MUiGNulG3DhVJfs7bFeg9X0dTl5K-cfs_fJy7zUFFdDWWusGy4YNdBw67AT0CiKcA2tQ04Z2OD9DanGUtoQbRhGijFFGi0ErjG5BuOD7zaG1urB7nTnjdxGv1HxWwbl5WQ1P6rHokKSCHJGIaeCZIuHk8XXLv9ItmEX-7y1RKISiEJRZwgfIB1DStG60wgE5T5r-T_r3PR4dFZJq87lILVPf52MM8E5z9z9gWvTEOLpnVDKGcfkB7PWhzg</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Khmaladze, Estate V.</creator><creator>Koul, Hira L.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20040601</creationdate><title>Martingale Transforms Goodness-of-Fit Tests in Regression Models</title><author>Khmaladze, Estate V. ; Koul, Hira L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-7c2cb8954d0d8ef2f90da41270ef1fad0b241271abe44b3cd521a55a3bc992723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>62G10</topic><topic>62J02</topic><topic>Approximation</topic><topic>Asymptotically distribution free</topic><topic>Brownian bridge</topic><topic>Brownian motion</topic><topic>Distribution functions</topic><topic>Distribution theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Linear regression</topic><topic>Martingales</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Monte Carlo simulation</topic><topic>Nonparametric inference</topic><topic>partial sum processes</topic><topic>Partial sums</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Regression analysis</topic><topic>Sample size</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khmaladze, Estate V.</creatorcontrib><creatorcontrib>Koul, Hira L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khmaladze, Estate V.</au><au>Koul, Hira L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Martingale Transforms Goodness-of-Fit Tests in Regression Models</atitle><jtitle>The Annals of statistics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>32</volume><issue>3</issue><spage>995</spage><epage>1034</epage><pages>995-1034</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><coden>ASTSC7</coden><abstract>This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009053604000000274</doi><tpages>40</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-5364 |
ispartof | The Annals of statistics, 2004-06, Vol.32 (3), p.995-1034 |
issn | 0090-5364 2168-8966 |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aos_1085408493 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 62G10 62J02 Approximation Asymptotically distribution free Brownian bridge Brownian motion Distribution functions Distribution theory Estimators Exact sciences and technology General topics Linear regression Martingales Mathematical models Mathematics Monte Carlo simulation Nonparametric inference partial sum processes Partial sums Probability and statistics Probability theory and stochastic processes Regression analysis Sample size Sciences and techniques of general use Statistics Stochastic processes Testing |
title | Martingale Transforms Goodness-of-Fit Tests in Regression Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Martingale%20Transforms%20Goodness-of-Fit%20Tests%20in%20Regression%20Models&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Khmaladze,%20Estate%20V.&rft.date=2004-06-01&rft.volume=32&rft.issue=3&rft.spage=995&rft.epage=1034&rft.pages=995-1034&rft.issn=0090-5364&rft.eissn=2168-8966&rft.coden=ASTSC7&rft_id=info:doi/10.1214/009053604000000274&rft_dat=%3Cjstor_proje%3E3448582%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196914097&rft_id=info:pmid/&rft_jstor_id=3448582&rfr_iscdi=true |