Martingale Transforms Goodness-of-Fit Tests in Regression Models

This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2004-06, Vol.32 (3), p.995-1034
Hauptverfasser: Khmaladze, Estate V., Koul, Hira L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.
ISSN:0090-5364
2168-8966
DOI:10.1214/009053604000000274