Bandit Problems With Infinitely Many Arms
We consider a bandit problem consisting of a sequence of $n$ choices from an infinite number of Bernoulli arms, with $n \rightarrow \infty$. The objective is to minimize the long-run failure rate. The Bernoulli parameters are independent observations from a distribution $F$. We first assume $F$ to b...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1997-10, Vol.25 (5), p.2103-2116 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a bandit problem consisting of a sequence of $n$ choices from an infinite number of Bernoulli arms, with $n \rightarrow \infty$. The objective is to minimize the long-run failure rate. The Bernoulli parameters are independent observations from a distribution $F$. We first assume $F$ to be the uniform distribution on (0, 1) and consider various extensions. In the uniform case we show that the best lower bound for the expected failure proportion is between $\sqrt{2}/\sqrt{n}$ and $2/\sqrt{n}$ and we exhibit classes of strategies that achieve the latter. |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/aos/1069362389 |