Bandit Problems With Infinitely Many Arms

We consider a bandit problem consisting of a sequence of $n$ choices from an infinite number of Bernoulli arms, with $n \rightarrow \infty$. The objective is to minimize the long-run failure rate. The Bernoulli parameters are independent observations from a distribution $F$. We first assume $F$ to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1997-10, Vol.25 (5), p.2103-2116
Hauptverfasser: Berry, Donald A., Chen, Robert W., Zame, Alan, Heath, David C., Shepp, Larry A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a bandit problem consisting of a sequence of $n$ choices from an infinite number of Bernoulli arms, with $n \rightarrow \infty$. The objective is to minimize the long-run failure rate. The Bernoulli parameters are independent observations from a distribution $F$. We first assume $F$ to be the uniform distribution on (0, 1) and consider various extensions. In the uniform case we show that the best lower bound for the expected failure proportion is between $\sqrt{2}/\sqrt{n}$ and $2/\sqrt{n}$ and we exhibit classes of strategies that achieve the latter.
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1069362389