Reducing Multidimensional Two-Sample Data to One-Dimensional Interpoint Comparisons

The most popular technique for reducing the dimensionality in comparing two multidimensional samples of X ∼ F and Y ∼ G is to analyze distributions of interpoint comparisons based on a univariate function h (e.g. the interpoint distances). We provide a theoretical foundation for this technique, by s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 1996-06, Vol.24 (3), p.1069-1074
Hauptverfasser: Maa, Jen-Fue, Pearl, Dennis K., Bartoszynski, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The most popular technique for reducing the dimensionality in comparing two multidimensional samples of X ∼ F and Y ∼ G is to analyze distributions of interpoint comparisons based on a univariate function h (e.g. the interpoint distances). We provide a theoretical foundation for this technique, by showing that having both i) the equality of the distributions of within sample comparisons (h(X1, X2) =Lh(Y1, Y2)) and ii) the equality of these with the distribution of between sample comparisons ((h(X1, X2) =Lh(X3, Y3)) is equivalent to the equality of the multivariate distributions (F = G).
ISSN:0090-5364
2168-8966
DOI:10.1214/aos/1032526956