Reducing Multidimensional Two-Sample Data to One-Dimensional Interpoint Comparisons
The most popular technique for reducing the dimensionality in comparing two multidimensional samples of X ∼ F and Y ∼ G is to analyze distributions of interpoint comparisons based on a univariate function h (e.g. the interpoint distances). We provide a theoretical foundation for this technique, by s...
Gespeichert in:
Veröffentlicht in: | The Annals of statistics 1996-06, Vol.24 (3), p.1069-1074 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most popular technique for reducing the dimensionality in comparing two multidimensional samples of X ∼ F and Y ∼ G is to analyze distributions of interpoint comparisons based on a univariate function h (e.g. the interpoint distances). We provide a theoretical foundation for this technique, by showing that having both i) the equality of the distributions of within sample comparisons (h(X1, X2) =Lh(Y1, Y2)) and ii) the equality of these with the distribution of between sample comparisons ((h(X1, X2) =Lh(X3, Y3)) is equivalent to the equality of the multivariate distributions (F = G). |
---|---|
ISSN: | 0090-5364 2168-8966 |
DOI: | 10.1214/aos/1032526956 |