AN AVERAGING PRINCIPLE FOR DIFFUSIONS IN FOLIATED SPACES

Consider an SDE on a foliated manifold whose trajectories lay on compact leaves. We investigate the effective behavior of a small transversal perturbation of order ε. An average principle is shown to hold such that the component transversal to the leaves converges to the solution of a deterministic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2016-01, Vol.44 (1), p.567-588
Hauptverfasser: Gonzales-Gargate, Ivan I., Ruffino, Paulo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider an SDE on a foliated manifold whose trajectories lay on compact leaves. We investigate the effective behavior of a small transversal perturbation of order ε. An average principle is shown to hold such that the component transversal to the leaves converges to the solution of a deterministic ODE, according to the average of the perturbing vector field with respect to invariant measures on the leaves, as ε goes to zero. An estimate of the rate of convergence is given. These results generalize the geometrical scope of previous approaches, including completely integrable stochastic Hamiltonian system.
ISSN:0091-1798
2168-894X
DOI:10.1214/14-AOP982