STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT
We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results imp...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2013-09, Vol.41 (5), p.3306-3344 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3344 |
---|---|
container_issue | 5 |
container_start_page | 3306 |
container_title | The Annals of probability |
container_volume | 41 |
creator | Da Prato, G. Flandoli, F. Priola, E. Röckner, M. |
description | We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions. |
doi_str_mv | 10.1214/12-aop763 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1378991841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42919806</jstor_id><sourcerecordid>42919806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</originalsourceid><addsrcrecordid>eNo9kU1PwkAQhjdGExE9-ANMNvHkobpfdHdvtmWBJrWFbtfoqSnbkkDUYgsH_71LIFzmnZk8eWcyA8A9Rs-YYPaCiVe1W-7TCzAg2BeekOzjEgwQktjDXIprcNP3G4SQzzkbgB9d5Fk6hSaNF0alSms4yXKoiyyaBbqII6jes8QUcZZCtTDBIdEwTuEsTkKVF1DPg0hpOHe5yUM1huEnDGCYmXTsijcVaJMHYaLgOI8nxS24WlVffXN30iEwE1VEMy_JpnEUJJ5llO88XFcjK0dCLBFly8qnFlnLkPB9LGtBuSQcMUxpTbgVlqJRTWS1qmVVN2RFGkqH4PXou-3aTWN3zd5-rety262_q-6vbKt1GZnk1D2Ju1uJKRdSYuHMh-DxbPG7b_pduWn33Y_busRccERHjHFHPR0p27V93zWr8wyMysNHXCiDbO4-4tiHI7vpd213BhmRWArk03_4x35z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787035447</pqid></control><display><type>article</type><title>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Da Prato, G. ; Flandoli, F. ; Priola, E. ; Röckner, M.</creator><creatorcontrib>Da Prato, G. ; Flandoli, F. ; Priola, E. ; Röckner, M.</creatorcontrib><description>We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/12-aop763</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>35R60 ; 60H15 ; Approximation ; bounded measurable drift ; Brownian motion ; Determinism ; Dimensional analysis ; Evolution equations ; Geometry ; Hilbert space ; Hilbert spaces ; Martingales ; Mathematics ; Pathwise uniqueness ; Probabilities ; Probability distribution ; Semigroups ; Stochastic models ; stochastic PDEs ; Studies ; Topology ; Uniqueness</subject><ispartof>The Annals of probability, 2013-09, Vol.41 (5), p.3306-3344</ispartof><rights>Copyright © 2013 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Sep 2013</rights><rights>Copyright 2013 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</citedby><cites>FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42919806$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42919806$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Da Prato, G.</creatorcontrib><creatorcontrib>Flandoli, F.</creatorcontrib><creatorcontrib>Priola, E.</creatorcontrib><creatorcontrib>Röckner, M.</creatorcontrib><title>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</title><title>The Annals of probability</title><description>We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.</description><subject>35R60</subject><subject>60H15</subject><subject>Approximation</subject><subject>bounded measurable drift</subject><subject>Brownian motion</subject><subject>Determinism</subject><subject>Dimensional analysis</subject><subject>Evolution equations</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Hilbert spaces</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Pathwise uniqueness</subject><subject>Probabilities</subject><subject>Probability distribution</subject><subject>Semigroups</subject><subject>Stochastic models</subject><subject>stochastic PDEs</subject><subject>Studies</subject><subject>Topology</subject><subject>Uniqueness</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kU1PwkAQhjdGExE9-ANMNvHkobpfdHdvtmWBJrWFbtfoqSnbkkDUYgsH_71LIFzmnZk8eWcyA8A9Rs-YYPaCiVe1W-7TCzAg2BeekOzjEgwQktjDXIprcNP3G4SQzzkbgB9d5Fk6hSaNF0alSms4yXKoiyyaBbqII6jes8QUcZZCtTDBIdEwTuEsTkKVF1DPg0hpOHe5yUM1huEnDGCYmXTsijcVaJMHYaLgOI8nxS24WlVffXN30iEwE1VEMy_JpnEUJJ5llO88XFcjK0dCLBFly8qnFlnLkPB9LGtBuSQcMUxpTbgVlqJRTWS1qmVVN2RFGkqH4PXou-3aTWN3zd5-rety262_q-6vbKt1GZnk1D2Ju1uJKRdSYuHMh-DxbPG7b_pduWn33Y_busRccERHjHFHPR0p27V93zWr8wyMysNHXCiDbO4-4tiHI7vpd213BhmRWArk03_4x35z</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Da Prato, G.</creator><creator>Flandoli, F.</creator><creator>Priola, E.</creator><creator>Röckner, M.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20130901</creationdate><title>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</title><author>Da Prato, G. ; Flandoli, F. ; Priola, E. ; Röckner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>35R60</topic><topic>60H15</topic><topic>Approximation</topic><topic>bounded measurable drift</topic><topic>Brownian motion</topic><topic>Determinism</topic><topic>Dimensional analysis</topic><topic>Evolution equations</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Hilbert spaces</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Pathwise uniqueness</topic><topic>Probabilities</topic><topic>Probability distribution</topic><topic>Semigroups</topic><topic>Stochastic models</topic><topic>stochastic PDEs</topic><topic>Studies</topic><topic>Topology</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Prato, G.</creatorcontrib><creatorcontrib>Flandoli, F.</creatorcontrib><creatorcontrib>Priola, E.</creatorcontrib><creatorcontrib>Röckner, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Prato, G.</au><au>Flandoli, F.</au><au>Priola, E.</au><au>Röckner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</atitle><jtitle>The Annals of probability</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>3306</spage><epage>3344</epage><pages>3306-3344</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/12-aop763</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2013-09, Vol.41 (5), p.3306-3344 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1378991841 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 35R60 60H15 Approximation bounded measurable drift Brownian motion Determinism Dimensional analysis Evolution equations Geometry Hilbert space Hilbert spaces Martingales Mathematics Pathwise uniqueness Probabilities Probability distribution Semigroups Stochastic models stochastic PDEs Studies Topology Uniqueness |
title | STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STRONG%20UNIQUENESS%20FOR%20STOCHASTIC%20EVOLUTION%20EQUATIONS%20IN%20HILBERT%20SPACES%20PERTURBED%20BY%20A%20BOUNDED%20MEASURABLE%20DRIFT&rft.jtitle=The%20Annals%20of%20probability&rft.au=Da%20Prato,%20G.&rft.date=2013-09-01&rft.volume=41&rft.issue=5&rft.spage=3306&rft.epage=3344&rft.pages=3306-3344&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/12-aop763&rft_dat=%3Cjstor_proje%3E42919806%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787035447&rft_id=info:pmid/&rft_jstor_id=42919806&rfr_iscdi=true |