STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT

We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2013-09, Vol.41 (5), p.3306-3344
Hauptverfasser: Da Prato, G., Flandoli, F., Priola, E., Röckner, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3344
container_issue 5
container_start_page 3306
container_title The Annals of probability
container_volume 41
creator Da Prato, G.
Flandoli, F.
Priola, E.
Röckner, M.
description We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.
doi_str_mv 10.1214/12-aop763
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1378991841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>42919806</jstor_id><sourcerecordid>42919806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</originalsourceid><addsrcrecordid>eNo9kU1PwkAQhjdGExE9-ANMNvHkobpfdHdvtmWBJrWFbtfoqSnbkkDUYgsH_71LIFzmnZk8eWcyA8A9Rs-YYPaCiVe1W-7TCzAg2BeekOzjEgwQktjDXIprcNP3G4SQzzkbgB9d5Fk6hSaNF0alSms4yXKoiyyaBbqII6jes8QUcZZCtTDBIdEwTuEsTkKVF1DPg0hpOHe5yUM1huEnDGCYmXTsijcVaJMHYaLgOI8nxS24WlVffXN30iEwE1VEMy_JpnEUJJ5llO88XFcjK0dCLBFly8qnFlnLkPB9LGtBuSQcMUxpTbgVlqJRTWS1qmVVN2RFGkqH4PXou-3aTWN3zd5-rety262_q-6vbKt1GZnk1D2Ju1uJKRdSYuHMh-DxbPG7b_pduWn33Y_busRccERHjHFHPR0p27V93zWr8wyMysNHXCiDbO4-4tiHI7vpd213BhmRWArk03_4x35z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787035447</pqid></control><display><type>article</type><title>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Da Prato, G. ; Flandoli, F. ; Priola, E. ; Röckner, M.</creator><creatorcontrib>Da Prato, G. ; Flandoli, F. ; Priola, E. ; Röckner, M.</creatorcontrib><description>We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/12-aop763</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>35R60 ; 60H15 ; Approximation ; bounded measurable drift ; Brownian motion ; Determinism ; Dimensional analysis ; Evolution equations ; Geometry ; Hilbert space ; Hilbert spaces ; Martingales ; Mathematics ; Pathwise uniqueness ; Probabilities ; Probability distribution ; Semigroups ; Stochastic models ; stochastic PDEs ; Studies ; Topology ; Uniqueness</subject><ispartof>The Annals of probability, 2013-09, Vol.41 (5), p.3306-3344</ispartof><rights>Copyright © 2013 Institute of Mathematical Statistics</rights><rights>Copyright Institute of Mathematical Statistics Sep 2013</rights><rights>Copyright 2013 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</citedby><cites>FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/42919806$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/42919806$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Da Prato, G.</creatorcontrib><creatorcontrib>Flandoli, F.</creatorcontrib><creatorcontrib>Priola, E.</creatorcontrib><creatorcontrib>Röckner, M.</creatorcontrib><title>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</title><title>The Annals of probability</title><description>We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.</description><subject>35R60</subject><subject>60H15</subject><subject>Approximation</subject><subject>bounded measurable drift</subject><subject>Brownian motion</subject><subject>Determinism</subject><subject>Dimensional analysis</subject><subject>Evolution equations</subject><subject>Geometry</subject><subject>Hilbert space</subject><subject>Hilbert spaces</subject><subject>Martingales</subject><subject>Mathematics</subject><subject>Pathwise uniqueness</subject><subject>Probabilities</subject><subject>Probability distribution</subject><subject>Semigroups</subject><subject>Stochastic models</subject><subject>stochastic PDEs</subject><subject>Studies</subject><subject>Topology</subject><subject>Uniqueness</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kU1PwkAQhjdGExE9-ANMNvHkobpfdHdvtmWBJrWFbtfoqSnbkkDUYgsH_71LIFzmnZk8eWcyA8A9Rs-YYPaCiVe1W-7TCzAg2BeekOzjEgwQktjDXIprcNP3G4SQzzkbgB9d5Fk6hSaNF0alSms4yXKoiyyaBbqII6jes8QUcZZCtTDBIdEwTuEsTkKVF1DPg0hpOHe5yUM1huEnDGCYmXTsijcVaJMHYaLgOI8nxS24WlVffXN30iEwE1VEMy_JpnEUJJ5llO88XFcjK0dCLBFly8qnFlnLkPB9LGtBuSQcMUxpTbgVlqJRTWS1qmVVN2RFGkqH4PXou-3aTWN3zd5-rety262_q-6vbKt1GZnk1D2Ju1uJKRdSYuHMh-DxbPG7b_pduWn33Y_busRccERHjHFHPR0p27V93zWr8wyMysNHXCiDbO4-4tiHI7vpd213BhmRWArk03_4x35z</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Da Prato, G.</creator><creator>Flandoli, F.</creator><creator>Priola, E.</creator><creator>Röckner, M.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20130901</creationdate><title>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</title><author>Da Prato, G. ; Flandoli, F. ; Priola, E. ; Röckner, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-1da5c9588b034ba63c0cc4086619d83792704133d27c8c305d29afd9ade2f2e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>35R60</topic><topic>60H15</topic><topic>Approximation</topic><topic>bounded measurable drift</topic><topic>Brownian motion</topic><topic>Determinism</topic><topic>Dimensional analysis</topic><topic>Evolution equations</topic><topic>Geometry</topic><topic>Hilbert space</topic><topic>Hilbert spaces</topic><topic>Martingales</topic><topic>Mathematics</topic><topic>Pathwise uniqueness</topic><topic>Probabilities</topic><topic>Probability distribution</topic><topic>Semigroups</topic><topic>Stochastic models</topic><topic>stochastic PDEs</topic><topic>Studies</topic><topic>Topology</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Da Prato, G.</creatorcontrib><creatorcontrib>Flandoli, F.</creatorcontrib><creatorcontrib>Priola, E.</creatorcontrib><creatorcontrib>Röckner, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Da Prato, G.</au><au>Flandoli, F.</au><au>Priola, E.</au><au>Röckner, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT</atitle><jtitle>The Annals of probability</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>3306</spage><epage>3344</epage><pages>3306-3344</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/12-aop763</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2013-09, Vol.41 (5), p.3306-3344
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1378991841
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 35R60
60H15
Approximation
bounded measurable drift
Brownian motion
Determinism
Dimensional analysis
Evolution equations
Geometry
Hilbert space
Hilbert spaces
Martingales
Mathematics
Pathwise uniqueness
Probabilities
Probability distribution
Semigroups
Stochastic models
stochastic PDEs
Studies
Topology
Uniqueness
title STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STRONG%20UNIQUENESS%20FOR%20STOCHASTIC%20EVOLUTION%20EQUATIONS%20IN%20HILBERT%20SPACES%20PERTURBED%20BY%20A%20BOUNDED%20MEASURABLE%20DRIFT&rft.jtitle=The%20Annals%20of%20probability&rft.au=Da%20Prato,%20G.&rft.date=2013-09-01&rft.volume=41&rft.issue=5&rft.spage=3306&rft.epage=3344&rft.pages=3306-3344&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/12-aop763&rft_dat=%3Cjstor_proje%3E42919806%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787035447&rft_id=info:pmid/&rft_jstor_id=42919806&rfr_iscdi=true