STRONG UNIQUENESS FOR STOCHASTIC EVOLUTION EQUATIONS IN HILBERT SPACES PERTURBED BY A BOUNDED MEASURABLE DRIFT

We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2013-09, Vol.41 (5), p.3306-3344
Hauptverfasser: Da Prato, G., Flandoli, F., Priola, E., Röckner, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove pathwise (hence strong) uniqueness of solutions to stochastic evolution equations in Hubert spaces with merely measurable bounded drift and cylindrical Wiener noise, thus generalizing Veretennikov's fundamental result on ℝd to infinite dimensions. Because Sobolev regularity results implying continuity or smoothness of functions do not hold on infinite-dimensional spaces, we employ methods and results developed in the study of Malliavin-Sobolev spaces in infinite dimensions. The price we pay is that we can prove uniqueness for a large class, but not for every initial distribution. Such restriction, however, is common in infinite dimensions.
ISSN:0091-1798
2168-894X
DOI:10.1214/12-aop763