SUPREMA OF LÉVY PROCESSES
In this paper we study the supremum functional M t = sup 0≤s≤t X s , where X t , t ≥ 0, is a one-dimensional Lévy process. Under very mild assumptions we provide a simple, uniform estimate of the cumulative distribution function of M t . In the symmetric case we find an integral representation of th...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2013-05, Vol.41 (3), p.2047-2065 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the supremum functional M t = sup 0≤s≤t X s , where X t , t ≥ 0, is a one-dimensional Lévy process. Under very mild assumptions we provide a simple, uniform estimate of the cumulative distribution function of M t . In the symmetric case we find an integral representation of the Laplace transform of the distribution of M t if the Lévy—Khintchin exponent of the process increases on (0, ∞). |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/11-AOP719 |