SUPREMA OF LÉVY PROCESSES

In this paper we study the supremum functional M t = sup 0≤s≤t X s , where X t , t ≥ 0, is a one-dimensional Lévy process. Under very mild assumptions we provide a simple, uniform estimate of the cumulative distribution function of M t . In the symmetric case we find an integral representation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2013-05, Vol.41 (3), p.2047-2065
Hauptverfasser: Kwaśnicki, Mateusz, Małecki, Jacek, Ryznar, Michał
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the supremum functional M t = sup 0≤s≤t X s , where X t , t ≥ 0, is a one-dimensional Lévy process. Under very mild assumptions we provide a simple, uniform estimate of the cumulative distribution function of M t . In the symmetric case we find an integral representation of the Laplace transform of the distribution of M t if the Lévy—Khintchin exponent of the process increases on (0, ∞).
ISSN:0091-1798
2168-894X
DOI:10.1214/11-AOP719