Backward Stochastic Differential Equations with Random Stopping Time and Singular Final Condition
In this paper we are concerned with one-dimensional backward stochastic differential equations (BSDE in short) of the following type: $Y_{t}=\xi -\int_{t\wedge \tau}^{\tau }Y_{r}|Y_{r}|^{q}\ dr-\int_{t\wedge \tau}^{\tau }Z_{r}\ dB_{r},\quad \quad t\geq 0$, where τ is a stopping time, q is a positive...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2007-05, Vol.35 (3), p.1071-1117 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we are concerned with one-dimensional backward stochastic differential equations (BSDE in short) of the following type: $Y_{t}=\xi -\int_{t\wedge \tau}^{\tau }Y_{r}|Y_{r}|^{q}\ dr-\int_{t\wedge \tau}^{\tau }Z_{r}\ dB_{r},\quad \quad t\geq 0$, where τ is a stopping time, q is a positive constant and ξ is a $\scr{F}_{\tau}\text{-measurable}$ random variable such that P(ξ = +∞) > 0. We study the link between these BSDE and the Dirichlet problem on a domain $D\subset {\Bbb R}^{d}$ and with boundary condition g, with g = +∞ on a set of positive Lebesgue measure. We also extend our results for more general BSDE. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/009117906000000746 |