On Vague Convergence of Stochastic Processes
Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity o...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 1975-12, Vol.3 (6), p.1014-1022 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1022 |
---|---|
container_issue | 6 |
container_start_page | 1014 |
container_title | The Annals of probability |
container_volume | 3 |
creator | Erickson, R. V. Fabian, Vaclav |
description | Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available. |
doi_str_mv | 10.1214/aop/1176996227 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176996227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2959206</jstor_id><sourcerecordid>2959206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-93b3e18314c25273d0bafcf622844524b989fb2706a4285369e1510471f587923</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKtXTx72B7htZpLNx01Z_IJCBa14W7JpUnepm5JsBf-9lS314OmFYZ6HeYeQS6ATQOBTEzZTACm0FojyiIwQhMqV5u_HZESphhykVqfkLKWWUiqk5CNyPe-yN7PauqwM3ZeLK9dZlwWfvfTBfpjUNzZ7jsG6lFw6JyferJO72OeYLO7vXsvHfDZ_eCpvZ7lFin2uWc0cKAbcYoGSLWltvPW7qxTnBfJaK-1rlFQYjqpgQjsogHIJvlBSIxuTm8G7iaF1tndbu26W1SY2nyZ-V8E0VbmY7af72LWv_trvFJNBYWNIKTp_oIFWv-_6D1wNQJv6EA_bqAuNVLAfZM1lmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Vague Convergence of Stochastic Processes</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Erickson, R. V. ; Fabian, Vaclav</creator><creatorcontrib>Erickson, R. V. ; Fabian, Vaclav</creatorcontrib><description>Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1176996227</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60B10 ; 60G99 ; 62E20 ; Mathematical theorems ; Perceptron convergence procedure ; Real lines ; Short Communications ; Skorohod metric ; stochastic process ; Stochastic processes ; Sufficient conditions ; tightness ; Topological theorems ; Topology ; uniform metric ; Vague convergence</subject><ispartof>The Annals of probability, 1975-12, Vol.3 (6), p.1014-1022</ispartof><rights>Copyright 1975 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2959206$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2959206$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Erickson, R. V.</creatorcontrib><creatorcontrib>Fabian, Vaclav</creatorcontrib><title>On Vague Convergence of Stochastic Processes</title><title>The Annals of probability</title><description>Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available.</description><subject>60B10</subject><subject>60G99</subject><subject>62E20</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Real lines</subject><subject>Short Communications</subject><subject>Skorohod metric</subject><subject>stochastic process</subject><subject>Stochastic processes</subject><subject>Sufficient conditions</subject><subject>tightness</subject><subject>Topological theorems</subject><subject>Topology</subject><subject>uniform metric</subject><subject>Vague convergence</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKtXTx72B7htZpLNx01Z_IJCBa14W7JpUnepm5JsBf-9lS314OmFYZ6HeYeQS6ATQOBTEzZTACm0FojyiIwQhMqV5u_HZESphhykVqfkLKWWUiqk5CNyPe-yN7PauqwM3ZeLK9dZlwWfvfTBfpjUNzZ7jsG6lFw6JyferJO72OeYLO7vXsvHfDZ_eCpvZ7lFin2uWc0cKAbcYoGSLWltvPW7qxTnBfJaK-1rlFQYjqpgQjsogHIJvlBSIxuTm8G7iaF1tndbu26W1SY2nyZ-V8E0VbmY7af72LWv_trvFJNBYWNIKTp_oIFWv-_6D1wNQJv6EA_bqAuNVLAfZM1lmw</recordid><startdate>19751201</startdate><enddate>19751201</enddate><creator>Erickson, R. V.</creator><creator>Fabian, Vaclav</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19751201</creationdate><title>On Vague Convergence of Stochastic Processes</title><author>Erickson, R. V. ; Fabian, Vaclav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-93b3e18314c25273d0bafcf622844524b989fb2706a4285369e1510471f587923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>60B10</topic><topic>60G99</topic><topic>62E20</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Real lines</topic><topic>Short Communications</topic><topic>Skorohod metric</topic><topic>stochastic process</topic><topic>Stochastic processes</topic><topic>Sufficient conditions</topic><topic>tightness</topic><topic>Topological theorems</topic><topic>Topology</topic><topic>uniform metric</topic><topic>Vague convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erickson, R. V.</creatorcontrib><creatorcontrib>Fabian, Vaclav</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erickson, R. V.</au><au>Fabian, Vaclav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Vague Convergence of Stochastic Processes</atitle><jtitle>The Annals of probability</jtitle><date>1975-12-01</date><risdate>1975</risdate><volume>3</volume><issue>6</issue><spage>1014</spage><epage>1022</epage><pages>1014-1022</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1176996227</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 1975-12, Vol.3 (6), p.1014-1022 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176996227 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 60B10 60G99 62E20 Mathematical theorems Perceptron convergence procedure Real lines Short Communications Skorohod metric stochastic process Stochastic processes Sufficient conditions tightness Topological theorems Topology uniform metric Vague convergence |
title | On Vague Convergence of Stochastic Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Vague%20Convergence%20of%20Stochastic%20Processes&rft.jtitle=The%20Annals%20of%20probability&rft.au=Erickson,%20R.%20V.&rft.date=1975-12-01&rft.volume=3&rft.issue=6&rft.spage=1014&rft.epage=1022&rft.pages=1014-1022&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/aop/1176996227&rft_dat=%3Cjstor_proje%3E2959206%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2959206&rfr_iscdi=true |