On Vague Convergence of Stochastic Processes

Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 1975-12, Vol.3 (6), p.1014-1022
Hauptverfasser: Erickson, R. V., Fabian, Vaclav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 6
container_start_page 1014
container_title The Annals of probability
container_volume 3
creator Erickson, R. V.
Fabian, Vaclav
description Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available.
doi_str_mv 10.1214/aop/1176996227
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176996227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2959206</jstor_id><sourcerecordid>2959206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-93b3e18314c25273d0bafcf622844524b989fb2706a4285369e1510471f587923</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWKtXTx72B7htZpLNx01Z_IJCBa14W7JpUnepm5JsBf-9lS314OmFYZ6HeYeQS6ATQOBTEzZTACm0FojyiIwQhMqV5u_HZESphhykVqfkLKWWUiqk5CNyPe-yN7PauqwM3ZeLK9dZlwWfvfTBfpjUNzZ7jsG6lFw6JyferJO72OeYLO7vXsvHfDZ_eCpvZ7lFin2uWc0cKAbcYoGSLWltvPW7qxTnBfJaK-1rlFQYjqpgQjsogHIJvlBSIxuTm8G7iaF1tndbu26W1SY2nyZ-V8E0VbmY7af72LWv_trvFJNBYWNIKTp_oIFWv-_6D1wNQJv6EA_bqAuNVLAfZM1lmw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Vague Convergence of Stochastic Processes</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Erickson, R. V. ; Fabian, Vaclav</creator><creatorcontrib>Erickson, R. V. ; Fabian, Vaclav</creatorcontrib><description>Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1176996227</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>60B10 ; 60G99 ; 62E20 ; Mathematical theorems ; Perceptron convergence procedure ; Real lines ; Short Communications ; Skorohod metric ; stochastic process ; Stochastic processes ; Sufficient conditions ; tightness ; Topological theorems ; Topology ; uniform metric ; Vague convergence</subject><ispartof>The Annals of probability, 1975-12, Vol.3 (6), p.1014-1022</ispartof><rights>Copyright 1975 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2959206$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2959206$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Erickson, R. V.</creatorcontrib><creatorcontrib>Fabian, Vaclav</creatorcontrib><title>On Vague Convergence of Stochastic Processes</title><title>The Annals of probability</title><description>Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available.</description><subject>60B10</subject><subject>60G99</subject><subject>62E20</subject><subject>Mathematical theorems</subject><subject>Perceptron convergence procedure</subject><subject>Real lines</subject><subject>Short Communications</subject><subject>Skorohod metric</subject><subject>stochastic process</subject><subject>Stochastic processes</subject><subject>Sufficient conditions</subject><subject>tightness</subject><subject>Topological theorems</subject><subject>Topology</subject><subject>uniform metric</subject><subject>Vague convergence</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNplkE1LAzEQhoMoWKtXTx72B7htZpLNx01Z_IJCBa14W7JpUnepm5JsBf-9lS314OmFYZ6HeYeQS6ATQOBTEzZTACm0FojyiIwQhMqV5u_HZESphhykVqfkLKWWUiqk5CNyPe-yN7PauqwM3ZeLK9dZlwWfvfTBfpjUNzZ7jsG6lFw6JyferJO72OeYLO7vXsvHfDZ_eCpvZ7lFin2uWc0cKAbcYoGSLWltvPW7qxTnBfJaK-1rlFQYjqpgQjsogHIJvlBSIxuTm8G7iaF1tndbu26W1SY2nyZ-V8E0VbmY7af72LWv_trvFJNBYWNIKTp_oIFWv-_6D1wNQJv6EA_bqAuNVLAfZM1lmw</recordid><startdate>19751201</startdate><enddate>19751201</enddate><creator>Erickson, R. V.</creator><creator>Fabian, Vaclav</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19751201</creationdate><title>On Vague Convergence of Stochastic Processes</title><author>Erickson, R. V. ; Fabian, Vaclav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-93b3e18314c25273d0bafcf622844524b989fb2706a4285369e1510471f587923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>60B10</topic><topic>60G99</topic><topic>62E20</topic><topic>Mathematical theorems</topic><topic>Perceptron convergence procedure</topic><topic>Real lines</topic><topic>Short Communications</topic><topic>Skorohod metric</topic><topic>stochastic process</topic><topic>Stochastic processes</topic><topic>Sufficient conditions</topic><topic>tightness</topic><topic>Topological theorems</topic><topic>Topology</topic><topic>uniform metric</topic><topic>Vague convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erickson, R. V.</creatorcontrib><creatorcontrib>Fabian, Vaclav</creatorcontrib><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erickson, R. V.</au><au>Fabian, Vaclav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Vague Convergence of Stochastic Processes</atitle><jtitle>The Annals of probability</jtitle><date>1975-12-01</date><risdate>1975</risdate><volume>3</volume><issue>6</issue><spage>1014</spage><epage>1022</epage><pages>1014-1022</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1176996227</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 1975-12, Vol.3 (6), p.1014-1022
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1176996227
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 60B10
60G99
62E20
Mathematical theorems
Perceptron convergence procedure
Real lines
Short Communications
Skorohod metric
stochastic process
Stochastic processes
Sufficient conditions
tightness
Topological theorems
Topology
uniform metric
Vague convergence
title On Vague Convergence of Stochastic Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A30%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Vague%20Convergence%20of%20Stochastic%20Processes&rft.jtitle=The%20Annals%20of%20probability&rft.au=Erickson,%20R.%20V.&rft.date=1975-12-01&rft.volume=3&rft.issue=6&rft.spage=1014&rft.epage=1022&rft.pages=1014-1022&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/aop/1176996227&rft_dat=%3Cjstor_proje%3E2959206%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2959206&rfr_iscdi=true