On Vague Convergence of Stochastic Processes
Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity o...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 1975-12, Vol.3 (6), p.1014-1022 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose $Y, Y_n$ are stochastic processes in $C\lbrack 0, 1 \rbrack$ and the finite-dimensional distributions of $Y_n$ converge vaguely to those of $Y$. Then a necessary and sufficient condition for the vague convergence of the distributions of $Y_n$ to that of $Y$ is an approximate equicontinuity of the sequence $\langle Y_n \rangle$. Dudley (1966) generalized this standard result. We generalize Dudley's result to the case when the values of $X_n$ are in an arbitrary metric space and extend the result also to the case of the Skorohod metric. In our situation vague compactness does not imply tightness and thus a different proof than Dudley's (1966) must be used. The proof we use is simple and of interest even when other proofs are available. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/aop/1176996227 |