Decoupling Inequalities for Stationary Gaussian Processes
Let {Xn}n ∈ Zd be a stationary Gaussian process. It is proved that for all finite subsets J of Zdand complex-valued measurable functions fj, j ∈ J, of a real variable,$|E(\prod_{j \in J}f_j(X_j))| \leq \prod_{j \in J}\|f_j(X_0)\|_p,$where p = ∑n ∈ Zd [|E(X0X n)|/E(X2 0)] is independent of J. A conti...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 1982-08, Vol.10 (3), p.702-708 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {Xn}n ∈ Zd
be a stationary Gaussian process. It is proved that for all finite subsets J of Zdand complex-valued measurable functions fj, j ∈ J, of a real variable,$|E(\prod_{j \in J}f_j(X_j))| \leq \prod_{j \in J}\|f_j(X_0)\|_p,$where p = ∑n ∈ Zd
[|E(X0X
n)|/E(X2
0)] is independent of J. A continuous version of this inequality is proved for stationary Gaussian processes {Xt}t ∈R
d
. It is shown that for all bounded measurable subsets Λ of Rdand complex-valued measurable functions V of a real variable, |E(exp(∫ΛV(Xt) dt))| ≤ |exp(V(X0))||Λ|
p, where |Λ| is the Lebesgue measure of Λ and p = ∫Rd
[|E(X0X
t)|/E(X2
0)] dt. Similar inequalities are proved for stationary Gaussian processes indexed by periodic quotient groups of Zdand Rd. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/aop/1176993778 |