Ordered Prime Divisors of a Random Integer

Without using the prime number theorem, we obtain the asymptotics of the rth largest prime divisor of a harmonically distributed random positive integer N; harmonic asymptotics are obtained from asymptotics of the zeta distribution via Tauberian methods. (Knuth and Trabb-Pardo need a strong form of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 1984-11, Vol.12 (4), p.1205-1212
1. Verfasser: Lloyd, Stuart P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Without using the prime number theorem, we obtain the asymptotics of the rth largest prime divisor of a harmonically distributed random positive integer N; harmonic asymptotics are obtained from asymptotics of the zeta distribution via Tauberian methods. (Knuth and Trabb-Pardo need a strong form of the prime number theorem to obtain the distributions when N is uniformly distributed.) A trick brings in Poisson variates, and then we can use the methods developed for the fractional length of the rth longest cycle in a random permutation.
ISSN:0091-1798
2168-894X
DOI:10.1214/aop/1176993149