Ordered Prime Divisors of a Random Integer
Without using the prime number theorem, we obtain the asymptotics of the rth largest prime divisor of a harmonically distributed random positive integer N; harmonic asymptotics are obtained from asymptotics of the zeta distribution via Tauberian methods. (Knuth and Trabb-Pardo need a strong form of...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 1984-11, Vol.12 (4), p.1205-1212 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Without using the prime number theorem, we obtain the asymptotics of the rth largest prime divisor of a harmonically distributed random positive integer N; harmonic asymptotics are obtained from asymptotics of the zeta distribution via Tauberian methods. (Knuth and Trabb-Pardo need a strong form of the prime number theorem to obtain the distributions when N is uniformly distributed.) A trick brings in Poisson variates, and then we can use the methods developed for the fractional length of the rth longest cycle in a random permutation. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/aop/1176993149 |