Fisher Information and Dichotomies in Equivalence/Contiguity

A contiguity dichotomy for two sequences of product measures is proved under the assumption of component measures belonging to a dominated experiment which is differentiable. This generalizes Eagleson's (1981) result for Gaussian measures. The dichotomy result is then used to generalize and cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 1989-10, Vol.17 (4), p.1664-1690
1. Verfasser: Thelen, Brian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A contiguity dichotomy for two sequences of product measures is proved under the assumption of component measures belonging to a dominated experiment which is differentiable. This generalizes Eagleson's (1981) result for Gaussian measures. The dichotomy result is then used to generalize and clarify the results of Shepp (1965) and Steele (1986) with regards to finite Fisher information and equivalence dichotomies between two product measures, one with a fixed component measure and the second with rigidly perturbed component measures.
ISSN:0091-1798
2168-894X
DOI:10.1214/aop/1176991181