Krein's Spectral Theory and the Paley-Wiener Expansion for Fractional Brownian Motion

In this paper we develop the spectral theory of the fractional Brownian motion (fBm) using the ideas of Krein's work on continuous analogous of orthogonal polynomials on the unit circle. We exhibit the functions which are orthogonal with respect to the spectral measure of the fBm and obtain an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2005-03, Vol.33 (2), p.620-644
Hauptverfasser: Dzhaparidze, Kacha, van Zanten, Harry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we develop the spectral theory of the fractional Brownian motion (fBm) using the ideas of Krein's work on continuous analogous of orthogonal polynomials on the unit circle. We exhibit the functions which are orthogonal with respect to the spectral measure of the fBm and obtain an explicit reproducing kernel in the frequency domain. We use these results to derive an extension of the classical Paley-Wiener expansion of the ordinary Brownian motion to the fractional case.
ISSN:0091-1798
2168-894X
DOI:10.1214/009117904000000955