Random Walks on Supercritical Percolation Clusters

We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2004-10, Vol.32 (4), p.3024-3084
1. Verfasser: Barlow, Martin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3084
container_issue 4
container_start_page 3024
container_title The Annals of probability
container_volume 32
creator Barlow, Martin T.
description We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.
doi_str_mv 10.1214/009117904000000748
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1107883346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481514</jstor_id><sourcerecordid>3481514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</originalsourceid><addsrcrecordid>eNplkE1LxDAQhoMouK7-AfFQBI_VfH_clMUvWFDURW8hTVNo7TY1aQ_-e7NuWQ_OZYaZZ94ZXgBOEbxEGNErCBVCQkEKf0NQuQdmGHGZS0U_9sFsA-SJkIfgKMYmMVwIOgP4xXSlX2fvpv2Mme-y17F3wYZ6qK1ps-dU-9YMdZos2jEOLsRjcFCZNrqTKc_B6u72bfGQL5_uHxc3y9xSTIdcoaowDBbCGq6IcraEhSMEldaVkAhOWUUYldAUgnGmsIOFZU5RbAxkinMyB9db3T74xtnBjbatS92Hem3Ct_am1ovVcupOyfheIwSFlITQjcT5TuJrdHHQjR9Dl77WKJ2AGBKWILyFbPAxBlftTiCoN-7q_-6mpYtJ2cRkVBVMZ-v4t8kxUSw9MQdnW66Jgw-7OaESMUTJD3BAgg8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196602035</pqid></control><display><type>article</type><title>Random Walks on Supercritical Percolation Clusters</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Barlow, Martin T.</creator><creatorcontrib>Barlow, Martin T.</creatorcontrib><description>We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117904000000748</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>58J35 ; 60K37 ; Cubes ; Distribution theory ; Exact sciences and technology ; Harmonic functions ; heat kernel ; Markov processes ; Mathematical analysis ; Mathematical constants ; Mathematical inequalities ; Mathematical theorems ; Mathematics ; Open star clusters ; Percolation ; Probabilities ; Probability ; Probability and statistics ; Probability theory ; Probability theory and stochastic processes ; Random walk ; Random walk theory ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Stochastic processes ; Studies ; Supercritical processes ; Theorems</subject><ispartof>The Annals of probability, 2004-10, Vol.32 (4), p.3024-3084</ispartof><rights>Copyright 2004 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Oct 2004</rights><rights>Copyright 2004 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</citedby><cites>FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481514$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481514$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27922,27923,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16239583$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlow, Martin T.</creatorcontrib><title>Random Walks on Supercritical Percolation Clusters</title><title>The Annals of probability</title><description>We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.</description><subject>58J35</subject><subject>60K37</subject><subject>Cubes</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Harmonic functions</subject><subject>heat kernel</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical constants</subject><subject>Mathematical inequalities</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Open star clusters</subject><subject>Percolation</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Probability theory and stochastic processes</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Supercritical processes</subject><subject>Theorems</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkE1LxDAQhoMouK7-AfFQBI_VfH_clMUvWFDURW8hTVNo7TY1aQ_-e7NuWQ_OZYaZZ94ZXgBOEbxEGNErCBVCQkEKf0NQuQdmGHGZS0U_9sFsA-SJkIfgKMYmMVwIOgP4xXSlX2fvpv2Mme-y17F3wYZ6qK1ps-dU-9YMdZos2jEOLsRjcFCZNrqTKc_B6u72bfGQL5_uHxc3y9xSTIdcoaowDBbCGq6IcraEhSMEldaVkAhOWUUYldAUgnGmsIOFZU5RbAxkinMyB9db3T74xtnBjbatS92Hem3Ct_am1ovVcupOyfheIwSFlITQjcT5TuJrdHHQjR9Dl77WKJ2AGBKWILyFbPAxBlftTiCoN-7q_-6mpYtJ2cRkVBVMZ-v4t8kxUSw9MQdnW66Jgw-7OaESMUTJD3BAgg8</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Barlow, Martin T.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20041001</creationdate><title>Random Walks on Supercritical Percolation Clusters</title><author>Barlow, Martin T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>58J35</topic><topic>60K37</topic><topic>Cubes</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Harmonic functions</topic><topic>heat kernel</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical constants</topic><topic>Mathematical inequalities</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Open star clusters</topic><topic>Percolation</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Probability theory and stochastic processes</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Supercritical processes</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlow, Martin T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlow, Martin T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Walks on Supercritical Percolation Clusters</atitle><jtitle>The Annals of probability</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>32</volume><issue>4</issue><spage>3024</spage><epage>3084</epage><pages>3024-3084</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117904000000748</doi><tpages>61</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2004-10, Vol.32 (4), p.3024-3084
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1107883346
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
subjects 58J35
60K37
Cubes
Distribution theory
Exact sciences and technology
Harmonic functions
heat kernel
Markov processes
Mathematical analysis
Mathematical constants
Mathematical inequalities
Mathematical theorems
Mathematics
Open star clusters
Percolation
Probabilities
Probability
Probability and statistics
Probability theory
Probability theory and stochastic processes
Random walk
Random walk theory
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Stochastic processes
Studies
Supercritical processes
Theorems
title Random Walks on Supercritical Percolation Clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Walks%20on%20Supercritical%20Percolation%20Clusters&rft.jtitle=The%20Annals%20of%20probability&rft.au=Barlow,%20Martin%20T.&rft.date=2004-10-01&rft.volume=32&rft.issue=4&rft.spage=3024&rft.epage=3084&rft.pages=3024-3084&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/009117904000000748&rft_dat=%3Cjstor_proje%3E3481514%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196602035&rft_id=info:pmid/&rft_jstor_id=3481514&rfr_iscdi=true