Random Walks on Supercritical Percolation Clusters
We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constan...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2004-10, Vol.32 (4), p.3024-3084 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3084 |
---|---|
container_issue | 4 |
container_start_page | 3024 |
container_title | The Annals of probability |
container_volume | 32 |
creator | Barlow, Martin T. |
description | We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω. |
doi_str_mv | 10.1214/009117904000000748 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1107883346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481514</jstor_id><sourcerecordid>3481514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</originalsourceid><addsrcrecordid>eNplkE1LxDAQhoMouK7-AfFQBI_VfH_clMUvWFDURW8hTVNo7TY1aQ_-e7NuWQ_OZYaZZ94ZXgBOEbxEGNErCBVCQkEKf0NQuQdmGHGZS0U_9sFsA-SJkIfgKMYmMVwIOgP4xXSlX2fvpv2Mme-y17F3wYZ6qK1ps-dU-9YMdZos2jEOLsRjcFCZNrqTKc_B6u72bfGQL5_uHxc3y9xSTIdcoaowDBbCGq6IcraEhSMEldaVkAhOWUUYldAUgnGmsIOFZU5RbAxkinMyB9db3T74xtnBjbatS92Hem3Ct_am1ovVcupOyfheIwSFlITQjcT5TuJrdHHQjR9Dl77WKJ2AGBKWILyFbPAxBlftTiCoN-7q_-6mpYtJ2cRkVBVMZ-v4t8kxUSw9MQdnW66Jgw-7OaESMUTJD3BAgg8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196602035</pqid></control><display><type>article</type><title>Random Walks on Supercritical Percolation Clusters</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Barlow, Martin T.</creator><creatorcontrib>Barlow, Martin T.</creatorcontrib><description>We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117904000000748</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>58J35 ; 60K37 ; Cubes ; Distribution theory ; Exact sciences and technology ; Harmonic functions ; heat kernel ; Markov processes ; Mathematical analysis ; Mathematical constants ; Mathematical inequalities ; Mathematical theorems ; Mathematics ; Open star clusters ; Percolation ; Probabilities ; Probability ; Probability and statistics ; Probability theory ; Probability theory and stochastic processes ; Random walk ; Random walk theory ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Stochastic processes ; Studies ; Supercritical processes ; Theorems</subject><ispartof>The Annals of probability, 2004-10, Vol.32 (4), p.3024-3084</ispartof><rights>Copyright 2004 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Oct 2004</rights><rights>Copyright 2004 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</citedby><cites>FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481514$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481514$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27922,27923,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16239583$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlow, Martin T.</creatorcontrib><title>Random Walks on Supercritical Percolation Clusters</title><title>The Annals of probability</title><description>We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.</description><subject>58J35</subject><subject>60K37</subject><subject>Cubes</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Harmonic functions</subject><subject>heat kernel</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematical constants</subject><subject>Mathematical inequalities</subject><subject>Mathematical theorems</subject><subject>Mathematics</subject><subject>Open star clusters</subject><subject>Percolation</subject><subject>Probabilities</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory</subject><subject>Probability theory and stochastic processes</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Supercritical processes</subject><subject>Theorems</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkE1LxDAQhoMouK7-AfFQBI_VfH_clMUvWFDURW8hTVNo7TY1aQ_-e7NuWQ_OZYaZZ94ZXgBOEbxEGNErCBVCQkEKf0NQuQdmGHGZS0U_9sFsA-SJkIfgKMYmMVwIOgP4xXSlX2fvpv2Mme-y17F3wYZ6qK1ps-dU-9YMdZos2jEOLsRjcFCZNrqTKc_B6u72bfGQL5_uHxc3y9xSTIdcoaowDBbCGq6IcraEhSMEldaVkAhOWUUYldAUgnGmsIOFZU5RbAxkinMyB9db3T74xtnBjbatS92Hem3Ct_am1ovVcupOyfheIwSFlITQjcT5TuJrdHHQjR9Dl77WKJ2AGBKWILyFbPAxBlftTiCoN-7q_-6mpYtJ2cRkVBVMZ-v4t8kxUSw9MQdnW66Jgw-7OaESMUTJD3BAgg8</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Barlow, Martin T.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20041001</creationdate><title>Random Walks on Supercritical Percolation Clusters</title><author>Barlow, Martin T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-91fba50b7ca6939ecd0be331dced037645f35480ab756592e0bc5e942aa059663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>58J35</topic><topic>60K37</topic><topic>Cubes</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Harmonic functions</topic><topic>heat kernel</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematical constants</topic><topic>Mathematical inequalities</topic><topic>Mathematical theorems</topic><topic>Mathematics</topic><topic>Open star clusters</topic><topic>Percolation</topic><topic>Probabilities</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory</topic><topic>Probability theory and stochastic processes</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Supercritical processes</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlow, Martin T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlow, Martin T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Walks on Supercritical Percolation Clusters</atitle><jtitle>The Annals of probability</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>32</volume><issue>4</issue><spage>3024</spage><epage>3084</epage><pages>3024-3084</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117904000000748</doi><tpages>61</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2004-10, Vol.32 (4), p.3024-3084 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1107883346 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | 58J35 60K37 Cubes Distribution theory Exact sciences and technology Harmonic functions heat kernel Markov processes Mathematical analysis Mathematical constants Mathematical inequalities Mathematical theorems Mathematics Open star clusters Percolation Probabilities Probability Probability and statistics Probability theory Probability theory and stochastic processes Random walk Random walk theory Sciences and techniques of general use Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Stochastic processes Studies Supercritical processes Theorems |
title | Random Walks on Supercritical Percolation Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Walks%20on%20Supercritical%20Percolation%20Clusters&rft.jtitle=The%20Annals%20of%20probability&rft.au=Barlow,%20Martin%20T.&rft.date=2004-10-01&rft.volume=32&rft.issue=4&rft.spage=3024&rft.epage=3084&rft.pages=3024-3084&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/009117904000000748&rft_dat=%3Cjstor_proje%3E3481514%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196602035&rft_id=info:pmid/&rft_jstor_id=3481514&rfr_iscdi=true |