Random Walks on Supercritical Percolation Clusters

We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2004-10, Vol.32 (4), p.3024-3084
1. Verfasser: Barlow, Martin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain Gaussian upper and lower bounds on the transition density qt(x,y) of the continuous time simple random walk on a supercritical percolation cluster C∞in the Euclidean lattice. The bounds, analogous to Aronsen's bounds for uniformly elliptic divergence form diffusions, hold with constants cidepending only on p (the percolation probability) and d. The irregular nature of the medium means that the bound for qt(x,·) holds only for t≥ Sx(ω), where the constant Sx(ω) depends on the percolation configuration ω.
ISSN:0091-1798
2168-894X
DOI:10.1214/009117904000000748