Stochastic Bounds for Lévy Processes
Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy proces...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2004-04, Vol.32 (2), p.1545-1552 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1552 |
---|---|
container_issue | 2 |
container_start_page | 1545 |
container_title | The Annals of probability |
container_volume | 32 |
creator | Doney, R. A. |
description | Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability. |
doi_str_mv | 10.1214/009117904000000315 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1084884861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481688</jstor_id><sourcerecordid>3481688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</originalsourceid><addsrcrecordid>eNplkc1KAzEQx4MoWKsvIB4WweNqJptkk5ta_IIFBS14C2k2wV1qU5NdoY_kc_hipnapB4eBgZnf_GeYQegY8DkQoBcYS4BSYop_rQC2g0YEuMiFpK-7aLQG8kSIfXQQY5sYXpZ0hM6eO2_edOwak137flHHzPmQVd9fn6vsKXhjY7TxEO05PY_2aIhjNL29eZnc59Xj3cPkqsoNJbTLnWTUYm0J17jGpJZlKR3RNZOYECf1jLEZ5abWHGoiWMG0kJA4Y8XMOU2LMbrc6C6Db63pbG_mTa2WoXnXYaW8btRkWg3ZIWi_VIAFFck5JInTrcRHb2OnWt-HRdpageQcIA1MENlAJvgYg3XbEYDV-qDq_0FT09mgrKPRcxf0wjTxr5OJggssE3ey4drY-bCtF1Skf4jiB3WKffc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196611102</pqid></control><display><type>article</type><title>Stochastic Bounds for Lévy Processes</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics & Statistics</source><creator>Doney, R. A.</creator><creatorcontrib>Doney, R. A.</creatorcontrib><description>Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117904000000315</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60G17 ; 60G51 ; Determinism ; Exact sciences and technology ; exit times ; Infinity ; Mathematical analysis ; Mathematics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Processes with independent increments ; Random variables ; Random walk ; random walks ; Sciences and techniques of general use ; Stochastic processes ; Studies ; weak drift to infinity</subject><ispartof>The Annals of probability, 2004-04, Vol.32 (2), p.1545-1552</ispartof><rights>Copyright 2004 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Apr 2004</rights><rights>Copyright 2004 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</citedby><cites>FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481688$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481688$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15836809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doney, R. A.</creatorcontrib><title>Stochastic Bounds for Lévy Processes</title><title>The Annals of probability</title><description>Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.</description><subject>60G17</subject><subject>60G51</subject><subject>Determinism</subject><subject>Exact sciences and technology</subject><subject>exit times</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Processes with independent increments</subject><subject>Random variables</subject><subject>Random walk</subject><subject>random walks</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>weak drift to infinity</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkc1KAzEQx4MoWKsvIB4WweNqJptkk5ta_IIFBS14C2k2wV1qU5NdoY_kc_hipnapB4eBgZnf_GeYQegY8DkQoBcYS4BSYop_rQC2g0YEuMiFpK-7aLQG8kSIfXQQY5sYXpZ0hM6eO2_edOwak137flHHzPmQVd9fn6vsKXhjY7TxEO05PY_2aIhjNL29eZnc59Xj3cPkqsoNJbTLnWTUYm0J17jGpJZlKR3RNZOYECf1jLEZ5abWHGoiWMG0kJA4Y8XMOU2LMbrc6C6Db63pbG_mTa2WoXnXYaW8btRkWg3ZIWi_VIAFFck5JInTrcRHb2OnWt-HRdpageQcIA1MENlAJvgYg3XbEYDV-qDq_0FT09mgrKPRcxf0wjTxr5OJggssE3ey4drY-bCtF1Skf4jiB3WKffc</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Doney, R. A.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20040401</creationdate><title>Stochastic Bounds for Lévy Processes</title><author>Doney, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60G17</topic><topic>60G51</topic><topic>Determinism</topic><topic>Exact sciences and technology</topic><topic>exit times</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Processes with independent increments</topic><topic>Random variables</topic><topic>Random walk</topic><topic>random walks</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>weak drift to infinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doney, R. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doney, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Bounds for Lévy Processes</atitle><jtitle>The Annals of probability</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>32</volume><issue>2</issue><spage>1545</spage><epage>1552</epage><pages>1545-1552</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117904000000315</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2004-04, Vol.32 (2), p.1545-1552 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1084884861 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics |
subjects | 60G17 60G51 Determinism Exact sciences and technology exit times Infinity Mathematical analysis Mathematics Probability Probability and statistics Probability theory and stochastic processes Processes with independent increments Random variables Random walk random walks Sciences and techniques of general use Stochastic processes Studies weak drift to infinity |
title | Stochastic Bounds for Lévy Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Bounds%20for%20L%C3%A9vy%20Processes&rft.jtitle=The%20Annals%20of%20probability&rft.au=Doney,%20R.%20A.&rft.date=2004-04-01&rft.volume=32&rft.issue=2&rft.spage=1545&rft.epage=1552&rft.pages=1545-1552&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/009117904000000315&rft_dat=%3Cjstor_proje%3E3481688%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196611102&rft_id=info:pmid/&rft_jstor_id=3481688&rfr_iscdi=true |