Stochastic Bounds for Lévy Processes

Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2004-04, Vol.32 (2), p.1545-1552
1. Verfasser: Doney, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1552
container_issue 2
container_start_page 1545
container_title The Annals of probability
container_volume 32
creator Doney, R. A.
description Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.
doi_str_mv 10.1214/009117904000000315
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1084884861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481688</jstor_id><sourcerecordid>3481688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</originalsourceid><addsrcrecordid>eNplkc1KAzEQx4MoWKsvIB4WweNqJptkk5ta_IIFBS14C2k2wV1qU5NdoY_kc_hipnapB4eBgZnf_GeYQegY8DkQoBcYS4BSYop_rQC2g0YEuMiFpK-7aLQG8kSIfXQQY5sYXpZ0hM6eO2_edOwak137flHHzPmQVd9fn6vsKXhjY7TxEO05PY_2aIhjNL29eZnc59Xj3cPkqsoNJbTLnWTUYm0J17jGpJZlKR3RNZOYECf1jLEZ5abWHGoiWMG0kJA4Y8XMOU2LMbrc6C6Db63pbG_mTa2WoXnXYaW8btRkWg3ZIWi_VIAFFck5JInTrcRHb2OnWt-HRdpageQcIA1MENlAJvgYg3XbEYDV-qDq_0FT09mgrKPRcxf0wjTxr5OJggssE3ey4drY-bCtF1Skf4jiB3WKffc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196611102</pqid></control><display><type>article</type><title>Stochastic Bounds for Lévy Processes</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Doney, R. A.</creator><creatorcontrib>Doney, R. A.</creatorcontrib><description>Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/009117904000000315</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60G17 ; 60G51 ; Determinism ; Exact sciences and technology ; exit times ; Infinity ; Mathematical analysis ; Mathematics ; Probability ; Probability and statistics ; Probability theory and stochastic processes ; Processes with independent increments ; Random variables ; Random walk ; random walks ; Sciences and techniques of general use ; Stochastic processes ; Studies ; weak drift to infinity</subject><ispartof>The Annals of probability, 2004-04, Vol.32 (2), p.1545-1552</ispartof><rights>Copyright 2004 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Institute of Mathematical Statistics Apr 2004</rights><rights>Copyright 2004 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</citedby><cites>FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481688$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481688$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15836809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Doney, R. A.</creatorcontrib><title>Stochastic Bounds for Lévy Processes</title><title>The Annals of probability</title><description>Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.</description><subject>60G17</subject><subject>60G51</subject><subject>Determinism</subject><subject>Exact sciences and technology</subject><subject>exit times</subject><subject>Infinity</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Processes with independent increments</subject><subject>Random variables</subject><subject>Random walk</subject><subject>random walks</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>weak drift to infinity</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNplkc1KAzEQx4MoWKsvIB4WweNqJptkk5ta_IIFBS14C2k2wV1qU5NdoY_kc_hipnapB4eBgZnf_GeYQegY8DkQoBcYS4BSYop_rQC2g0YEuMiFpK-7aLQG8kSIfXQQY5sYXpZ0hM6eO2_edOwak137flHHzPmQVd9fn6vsKXhjY7TxEO05PY_2aIhjNL29eZnc59Xj3cPkqsoNJbTLnWTUYm0J17jGpJZlKR3RNZOYECf1jLEZ5abWHGoiWMG0kJA4Y8XMOU2LMbrc6C6Db63pbG_mTa2WoXnXYaW8btRkWg3ZIWi_VIAFFck5JInTrcRHb2OnWt-HRdpageQcIA1MENlAJvgYg3XbEYDV-qDq_0FT09mgrKPRcxf0wjTxr5OJggssE3ey4drY-bCtF1Skf4jiB3WKffc</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Doney, R. A.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20040401</creationdate><title>Stochastic Bounds for Lévy Processes</title><author>Doney, R. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-f954e0ae26a0d02d9779f2ad59022f9ab55b46cda61d28535a89102dce8bffa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>60G17</topic><topic>60G51</topic><topic>Determinism</topic><topic>Exact sciences and technology</topic><topic>exit times</topic><topic>Infinity</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Processes with independent increments</topic><topic>Random variables</topic><topic>Random walk</topic><topic>random walks</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>weak drift to infinity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doney, R. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doney, R. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Bounds for Lévy Processes</atitle><jtitle>The Annals of probability</jtitle><date>2004-04-01</date><risdate>2004</risdate><volume>32</volume><issue>2</issue><spage>1545</spage><epage>1552</epage><pages>1545-1552</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/009117904000000315</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2004-04, Vol.32 (2), p.1545-1552
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1084884861
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete; JSTOR Mathematics & Statistics
subjects 60G17
60G51
Determinism
Exact sciences and technology
exit times
Infinity
Mathematical analysis
Mathematics
Probability
Probability and statistics
Probability theory and stochastic processes
Processes with independent increments
Random variables
Random walk
random walks
Sciences and techniques of general use
Stochastic processes
Studies
weak drift to infinity
title Stochastic Bounds for Lévy Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Bounds%20for%20L%C3%A9vy%20Processes&rft.jtitle=The%20Annals%20of%20probability&rft.au=Doney,%20R.%20A.&rft.date=2004-04-01&rft.volume=32&rft.issue=2&rft.spage=1545&rft.epage=1552&rft.pages=1545-1552&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/009117904000000315&rft_dat=%3Cjstor_proje%3E3481688%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196611102&rft_id=info:pmid/&rft_jstor_id=3481688&rfr_iscdi=true