Stochastic Bounds for Lévy Processes

Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2004-04, Vol.32 (2), p.1545-1552
1. Verfasser: Doney, R. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the Wiener-Hopf factorization, it is shown that it is possible to bound the path of an arbitrary Lévy process above and below by the paths of two random walks. These walks have the same step distribution, but different random starting points. In principle, this allows one to deduce Lévy process versions of many known results about the large-time behavior of random walks. This is illustrated by establishing a comprehensive theorem about Lévy processes which converge to ∞ in probability.
ISSN:0091-1798
2168-894X
DOI:10.1214/009117904000000315