First Passage Percolation Has Sublinear Distance Variance
Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2,...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2003-10, Vol.31 (4), p.1970-1978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1978 |
---|---|
container_issue | 4 |
container_start_page | 1970 |
container_title | The Annals of probability |
container_volume | 31 |
creator | Benjamini, Itai Kalai, Gil Schramm, Oded |
description | Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed. |
doi_str_mv | 10.1214/aop/1068646373 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1068646373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481536</jstor_id><sourcerecordid>3481536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</originalsourceid><addsrcrecordid>eNplULFOwzAQtRBIlMLKxJCFMa0vdux4AxVKkSJRCYrYootrI1chrux04O9J1agdmN7p7t67d4-QW6ATyIBP0W-nQEUhuGCSnZFRBqJIC8W_zsmIUgUpSFVckqsYN5RSISUfETV3IXbJEmPEb5MsTdC-wc75NllgTN53deNagyF5crHDVpvkE4PbF9fkwmITzc2AY7KaP3_MFmn59vI6eyxTzXPoUrBS1VwqUUujszwHgbXlSlrVW-p7OQNDrRSocwtrZgpNheCMruuaCy05G5OHg-42-I3Rndnpxq2rbXA_GH4rj66arcqhO0AfRXWKopeYHCR08DEGY49soNU-u_-E--EmRo2NDf3DLp5YOZNCqb23u8PeJnY-HOeMF_2KYH-iVnie</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Passage Percolation Has Sublinear Distance Variance</title><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Benjamini, Itai ; Kalai, Gil ; Schramm, Oded</creator><creatorcontrib>Benjamini, Itai ; Kalai, Gil ; Schramm, Oded</creatorcontrib><description>Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1068646373</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>28A35 ; 60B15 ; 60E15 ; 60K35 ; Coordinate systems ; discrete cube ; discrete harmonic analysis ; discrete isoperimetric inequalities ; Distribution theory ; Exact sciences and technology ; Harmonic analysis ; Hypercontractive ; influences ; Mathematical analysis ; Mathematical induction ; Mathematical inequalities ; Mathematics ; Measure and integration ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory on algebraic and topological structures ; random metrics ; Research universities ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistical variance ; Vertices</subject><ispartof>The Annals of probability, 2003-10, Vol.31 (4), p.1970-1978</ispartof><rights>Copyright 2003 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2003 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</citedby><cites>FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481536$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481536$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15376994$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benjamini, Itai</creatorcontrib><creatorcontrib>Kalai, Gil</creatorcontrib><creatorcontrib>Schramm, Oded</creatorcontrib><title>First Passage Percolation Has Sublinear Distance Variance</title><title>The Annals of probability</title><description>Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.</description><subject>28A35</subject><subject>60B15</subject><subject>60E15</subject><subject>60K35</subject><subject>Coordinate systems</subject><subject>discrete cube</subject><subject>discrete harmonic analysis</subject><subject>discrete isoperimetric inequalities</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Harmonic analysis</subject><subject>Hypercontractive</subject><subject>influences</subject><subject>Mathematical analysis</subject><subject>Mathematical induction</subject><subject>Mathematical inequalities</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory on algebraic and topological structures</subject><subject>random metrics</subject><subject>Research universities</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistical variance</subject><subject>Vertices</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNplULFOwzAQtRBIlMLKxJCFMa0vdux4AxVKkSJRCYrYootrI1chrux04O9J1agdmN7p7t67d4-QW6ATyIBP0W-nQEUhuGCSnZFRBqJIC8W_zsmIUgUpSFVckqsYN5RSISUfETV3IXbJEmPEb5MsTdC-wc75NllgTN53deNagyF5crHDVpvkE4PbF9fkwmITzc2AY7KaP3_MFmn59vI6eyxTzXPoUrBS1VwqUUujszwHgbXlSlrVW-p7OQNDrRSocwtrZgpNheCMruuaCy05G5OHg-42-I3Rndnpxq2rbXA_GH4rj66arcqhO0AfRXWKopeYHCR08DEGY49soNU-u_-E--EmRo2NDf3DLp5YOZNCqb23u8PeJnY-HOeMF_2KYH-iVnie</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Benjamini, Itai</creator><creator>Kalai, Gil</creator><creator>Schramm, Oded</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031001</creationdate><title>First Passage Percolation Has Sublinear Distance Variance</title><author>Benjamini, Itai ; Kalai, Gil ; Schramm, Oded</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>28A35</topic><topic>60B15</topic><topic>60E15</topic><topic>60K35</topic><topic>Coordinate systems</topic><topic>discrete cube</topic><topic>discrete harmonic analysis</topic><topic>discrete isoperimetric inequalities</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Harmonic analysis</topic><topic>Hypercontractive</topic><topic>influences</topic><topic>Mathematical analysis</topic><topic>Mathematical induction</topic><topic>Mathematical inequalities</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory on algebraic and topological structures</topic><topic>random metrics</topic><topic>Research universities</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistical variance</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benjamini, Itai</creatorcontrib><creatorcontrib>Kalai, Gil</creatorcontrib><creatorcontrib>Schramm, Oded</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benjamini, Itai</au><au>Kalai, Gil</au><au>Schramm, Oded</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Passage Percolation Has Sublinear Distance Variance</atitle><jtitle>The Annals of probability</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>31</volume><issue>4</issue><spage>1970</spage><epage>1978</epage><pages>1970-1978</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1068646373</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2003-10, Vol.31 (4), p.1970-1978 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1068646373 |
source | Project Euclid; JSTOR; EZB Electronic Journals Library |
subjects | 28A35 60B15 60E15 60K35 Coordinate systems discrete cube discrete harmonic analysis discrete isoperimetric inequalities Distribution theory Exact sciences and technology Harmonic analysis Hypercontractive influences Mathematical analysis Mathematical induction Mathematical inequalities Mathematics Measure and integration Probability and statistics Probability theory and stochastic processes Probability theory on algebraic and topological structures random metrics Research universities Sciences and techniques of general use Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) Statistical variance Vertices |
title | First Passage Percolation Has Sublinear Distance Variance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Passage%20Percolation%20Has%20Sublinear%20Distance%20Variance&rft.jtitle=The%20Annals%20of%20probability&rft.au=Benjamini,%20Itai&rft.date=2003-10-01&rft.volume=31&rft.issue=4&rft.spage=1970&rft.epage=1978&rft.pages=1970-1978&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1068646373&rft_dat=%3Cjstor_proje%3E3481536%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3481536&rfr_iscdi=true |