First Passage Percolation Has Sublinear Distance Variance

Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2003-10, Vol.31 (4), p.1970-1978
Hauptverfasser: Benjamini, Itai, Kalai, Gil, Schramm, Oded
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1978
container_issue 4
container_start_page 1970
container_title The Annals of probability
container_volume 31
creator Benjamini, Itai
Kalai, Gil
Schramm, Oded
description Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.
doi_str_mv 10.1214/aop/1068646373
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1068646373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3481536</jstor_id><sourcerecordid>3481536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</originalsourceid><addsrcrecordid>eNplULFOwzAQtRBIlMLKxJCFMa0vdux4AxVKkSJRCYrYootrI1chrux04O9J1agdmN7p7t67d4-QW6ATyIBP0W-nQEUhuGCSnZFRBqJIC8W_zsmIUgUpSFVckqsYN5RSISUfETV3IXbJEmPEb5MsTdC-wc75NllgTN53deNagyF5crHDVpvkE4PbF9fkwmITzc2AY7KaP3_MFmn59vI6eyxTzXPoUrBS1VwqUUujszwHgbXlSlrVW-p7OQNDrRSocwtrZgpNheCMruuaCy05G5OHg-42-I3Rndnpxq2rbXA_GH4rj66arcqhO0AfRXWKopeYHCR08DEGY49soNU-u_-E--EmRo2NDf3DLp5YOZNCqb23u8PeJnY-HOeMF_2KYH-iVnie</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Passage Percolation Has Sublinear Distance Variance</title><source>Project Euclid</source><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Benjamini, Itai ; Kalai, Gil ; Schramm, Oded</creator><creatorcontrib>Benjamini, Itai ; Kalai, Gil ; Schramm, Oded</creatorcontrib><description>Let 0 &lt; a &lt; b &lt; ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d &gt; 1, the distance distω(0, v) from the origin to a vertex v, |v| &gt; 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1068646373</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>28A35 ; 60B15 ; 60E15 ; 60K35 ; Coordinate systems ; discrete cube ; discrete harmonic analysis ; discrete isoperimetric inequalities ; Distribution theory ; Exact sciences and technology ; Harmonic analysis ; Hypercontractive ; influences ; Mathematical analysis ; Mathematical induction ; Mathematical inequalities ; Mathematics ; Measure and integration ; Probability and statistics ; Probability theory and stochastic processes ; Probability theory on algebraic and topological structures ; random metrics ; Research universities ; Sciences and techniques of general use ; Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications) ; Statistical variance ; Vertices</subject><ispartof>The Annals of probability, 2003-10, Vol.31 (4), p.1970-1978</ispartof><rights>Copyright 2003 The Institute of Mathematical Statistics</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2003 Institute of Mathematical Statistics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</citedby><cites>FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3481536$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3481536$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,926,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15376994$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benjamini, Itai</creatorcontrib><creatorcontrib>Kalai, Gil</creatorcontrib><creatorcontrib>Schramm, Oded</creatorcontrib><title>First Passage Percolation Has Sublinear Distance Variance</title><title>The Annals of probability</title><description>Let 0 &lt; a &lt; b &lt; ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d &gt; 1, the distance distω(0, v) from the origin to a vertex v, |v| &gt; 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.</description><subject>28A35</subject><subject>60B15</subject><subject>60E15</subject><subject>60K35</subject><subject>Coordinate systems</subject><subject>discrete cube</subject><subject>discrete harmonic analysis</subject><subject>discrete isoperimetric inequalities</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Harmonic analysis</subject><subject>Hypercontractive</subject><subject>influences</subject><subject>Mathematical analysis</subject><subject>Mathematical induction</subject><subject>Mathematical inequalities</subject><subject>Mathematics</subject><subject>Measure and integration</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability theory on algebraic and topological structures</subject><subject>random metrics</subject><subject>Research universities</subject><subject>Sciences and techniques of general use</subject><subject>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</subject><subject>Statistical variance</subject><subject>Vertices</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNplULFOwzAQtRBIlMLKxJCFMa0vdux4AxVKkSJRCYrYootrI1chrux04O9J1agdmN7p7t67d4-QW6ATyIBP0W-nQEUhuGCSnZFRBqJIC8W_zsmIUgUpSFVckqsYN5RSISUfETV3IXbJEmPEb5MsTdC-wc75NllgTN53deNagyF5crHDVpvkE4PbF9fkwmITzc2AY7KaP3_MFmn59vI6eyxTzXPoUrBS1VwqUUujszwHgbXlSlrVW-p7OQNDrRSocwtrZgpNheCMruuaCy05G5OHg-42-I3Rndnpxq2rbXA_GH4rj66arcqhO0AfRXWKopeYHCR08DEGY49soNU-u_-E--EmRo2NDf3DLp5YOZNCqb23u8PeJnY-HOeMF_2KYH-iVnie</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Benjamini, Itai</creator><creator>Kalai, Gil</creator><creator>Schramm, Oded</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20031001</creationdate><title>First Passage Percolation Has Sublinear Distance Variance</title><author>Benjamini, Itai ; Kalai, Gil ; Schramm, Oded</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1f79b4796b7ec25516abf497f9009b7e531e0f76ac5f1d3e8c066430dbb46c743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>28A35</topic><topic>60B15</topic><topic>60E15</topic><topic>60K35</topic><topic>Coordinate systems</topic><topic>discrete cube</topic><topic>discrete harmonic analysis</topic><topic>discrete isoperimetric inequalities</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Harmonic analysis</topic><topic>Hypercontractive</topic><topic>influences</topic><topic>Mathematical analysis</topic><topic>Mathematical induction</topic><topic>Mathematical inequalities</topic><topic>Mathematics</topic><topic>Measure and integration</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability theory on algebraic and topological structures</topic><topic>random metrics</topic><topic>Research universities</topic><topic>Sciences and techniques of general use</topic><topic>Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)</topic><topic>Statistical variance</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benjamini, Itai</creatorcontrib><creatorcontrib>Kalai, Gil</creatorcontrib><creatorcontrib>Schramm, Oded</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benjamini, Itai</au><au>Kalai, Gil</au><au>Schramm, Oded</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Passage Percolation Has Sublinear Distance Variance</atitle><jtitle>The Annals of probability</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>31</volume><issue>4</issue><spage>1970</spage><epage>1978</epage><pages>1970-1978</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>Let 0 &lt; a &lt; b &lt; ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d &gt; 1, the distance distω(0, v) from the origin to a vertex v, |v| &gt; 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1068646373</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 2003-10, Vol.31 (4), p.1970-1978
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1068646373
source Project Euclid; JSTOR; EZB Electronic Journals Library
subjects 28A35
60B15
60E15
60K35
Coordinate systems
discrete cube
discrete harmonic analysis
discrete isoperimetric inequalities
Distribution theory
Exact sciences and technology
Harmonic analysis
Hypercontractive
influences
Mathematical analysis
Mathematical induction
Mathematical inequalities
Mathematics
Measure and integration
Probability and statistics
Probability theory and stochastic processes
Probability theory on algebraic and topological structures
random metrics
Research universities
Sciences and techniques of general use
Special processes (renewal theory, markov renewal processes, semi-markov processes, statistical mechanics type models, applications)
Statistical variance
Vertices
title First Passage Percolation Has Sublinear Distance Variance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Passage%20Percolation%20Has%20Sublinear%20Distance%20Variance&rft.jtitle=The%20Annals%20of%20probability&rft.au=Benjamini,%20Itai&rft.date=2003-10-01&rft.volume=31&rft.issue=4&rft.spage=1970&rft.epage=1978&rft.pages=1970-1978&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1068646373&rft_dat=%3Cjstor_proje%3E3481536%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=3481536&rfr_iscdi=true