First Passage Percolation Has Sublinear Distance Variance

Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2003-10, Vol.31 (4), p.1970-1978
Hauptverfasser: Benjamini, Itai, Kalai, Gil, Schramm, Oded
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed.
ISSN:0091-1798
2168-894X
DOI:10.1214/aop/1068646373