First Passage Percolation Has Sublinear Distance Variance
Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2,...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2003-10, Vol.31 (4), p.1970-1978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let 0 < a < b < ∞, and for each edge e of Zdlet ωe=a or ωe=b, each with probability 1/2, independently. This induces a random metric distωon the vertices of Zd, called first passage percolation. We prove that for d > 1, the distance distω(0, v) from the origin to a vertex v, |v| > 2, has variance bounded by C|v|/log |v|, where C = C (a, b, d) is a constant which may only depend on a, b and d. Some related variants are also discussed. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/aop/1068646373 |