A limit theorem for the contour process of condidtioned Galton--Watson trees

In this work, we study asymptotics of the genealogy of Galton--Watson processes conditioned on the total progeny. We consider a fixed, aperiodic and critical offspring distribution such that the rescaled Galton--Watson processes converges to a continuous-state branching process (CSBP) with a stable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 2003-04, Vol.31 (2), p.996-1027
1. Verfasser: Duquesne, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study asymptotics of the genealogy of Galton--Watson processes conditioned on the total progeny. We consider a fixed, aperiodic and critical offspring distribution such that the rescaled Galton--Watson processes converges to a continuous-state branching process (CSBP) with a stable branching mechanism of index \alpha \in (1, 2]. We code the genealogy by two different processes: the contour process and the height process that Le Gall and Le Jan recently introduced. We show that the rescaled height process of the corresponding Galton--Watson family tree, with one ancestor and conditioned on the total progeny, converges in a functional sense, to a new process: the normalized excursion of the continuous height process associated with the \alpha -stable CSBP. We deduce from this convergence an analogous limit theorem for the contour process. In the Brownian case \alpha =2, the limiting process is the normalized Brownian excursion that codes the continuum random tree: the result is due to Aldous who used a different method.
ISSN:0091-1798
2168-894X
DOI:10.1214/aop/1048516543