Darling-Erdős Theorem for Self-Normalized Sums
Let X,X1,X2,... be i.i.d. nondegenerate random variables, Sn=∑j=1 nXjand Vn 2=∑j=1 nXj 2. We investigate the asymptotic behavior in distribution of the maximum of self-normalized sums, max1≤ k≤ nSk/Vk, and the law of the iterated logarithm for self-normalized sums, Sn/Vn, when X belongs to the domai...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2003-04, Vol.31 (2), p.676-692 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X,X1,X2,... be i.i.d. nondegenerate random variables, Sn=∑j=1
nXjand Vn
2=∑j=1
nXj
2. We investigate the asymptotic behavior in distribution of the maximum of self-normalized sums, max1≤ k≤ nSk/Vk, and the law of the iterated logarithm for self-normalized sums, Sn/Vn, when X belongs to the domain of attraction of the normal law. In this context, we establish a Darling-Erdős-type theorem as well as an Erdős-Feller-Kolmogorov-Petrovski-type test for self-normalized sums. |
---|---|
ISSN: | 0091-1798 2168-894X |
DOI: | 10.1214/aop/1048516532 |