Central Limit Theorem for the Edwards Model
The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the lar...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 1997-04, Vol.25 (2), p.573-597 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 2 |
container_start_page | 573 |
container_title | The Annals of probability |
container_volume | 25 |
creator | van der Hofstad, R. den Hollander, F. Konig, W. |
description | The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion). |
doi_str_mv | 10.1214/aop/1024404412 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1024404412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2959604</jstor_id><sourcerecordid>2959604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</originalsourceid><addsrcrecordid>eNplUE1Lw0AQXUTBWr168pCDN0k7k0w2uzcl1A-IeGnBW9hkd2lK2i27EfHfG2loD54ezLwP3mPsFmGGCdJcuf0cISECIkzO2CRBLmIh6fOcTQAkxphLccmuQtgAAM9zmrCHwux6r7qobLdtHy3XxnmzjazzUb820UJ_K69D9O606a7ZhVVdMDcjTtnqebEsXuPy4-WteCrjJhXUxzWmkFlqgIY8QEK0UKeIIKw1XGQ1WWlsYiSSyrhOSSst0EoC1EYonk7Z48F3793GNL35arpWV3vfbpX_qZxqq2JVjtcRhvLVqfxgMTtYNN6F4I09qhGqv7X-C-7HTBUa1Vmvdk0bjqqEC56THGh3B9om9M6f3jKTHCj9BamzclU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Central Limit Theorem for the Edwards Model</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics and Statistics</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>van der Hofstad, R. ; den Hollander, F. ; Konig, W.</creator><creatorcontrib>van der Hofstad, R. ; den Hollander, F. ; Konig, W.</creatorcontrib><description>The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1024404412</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F05 ; 60J55 ; 60J65 ; Bleeding time ; Brownian motion ; Central limit theorem ; Edwards model ; Eigenfunctions ; Eigenvalues ; Exact sciences and technology ; Infinity ; Limit theorems ; Markov processes ; Martingales ; Mathematical analysis ; Mathematics ; Operator theory ; Polymers ; Probability and statistics ; Probability theory and stochastic processes ; Ray-Knight theorems ; Sciences and techniques of general use ; Transition probabilities</subject><ispartof>The Annals of probability, 1997-04, Vol.25 (2), p.573-597</ispartof><rights>Copyright 1997 Institute of Mathematical Statistics</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</citedby><cites>FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2959604$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2959604$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229,79752,79760</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2686749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Hofstad, R.</creatorcontrib><creatorcontrib>den Hollander, F.</creatorcontrib><creatorcontrib>Konig, W.</creatorcontrib><title>Central Limit Theorem for the Edwards Model</title><title>The Annals of probability</title><description>The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).</description><subject>60F05</subject><subject>60J55</subject><subject>60J65</subject><subject>Bleeding time</subject><subject>Brownian motion</subject><subject>Central limit theorem</subject><subject>Edwards model</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Infinity</subject><subject>Limit theorems</subject><subject>Markov processes</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operator theory</subject><subject>Polymers</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Ray-Knight theorems</subject><subject>Sciences and techniques of general use</subject><subject>Transition probabilities</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplUE1Lw0AQXUTBWr168pCDN0k7k0w2uzcl1A-IeGnBW9hkd2lK2i27EfHfG2loD54ezLwP3mPsFmGGCdJcuf0cISECIkzO2CRBLmIh6fOcTQAkxphLccmuQtgAAM9zmrCHwux6r7qobLdtHy3XxnmzjazzUb820UJ_K69D9O606a7ZhVVdMDcjTtnqebEsXuPy4-WteCrjJhXUxzWmkFlqgIY8QEK0UKeIIKw1XGQ1WWlsYiSSyrhOSSst0EoC1EYonk7Z48F3793GNL35arpWV3vfbpX_qZxqq2JVjtcRhvLVqfxgMTtYNN6F4I09qhGqv7X-C-7HTBUa1Vmvdk0bjqqEC56THGh3B9om9M6f3jKTHCj9BamzclU</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>van der Hofstad, R.</creator><creator>den Hollander, F.</creator><creator>Konig, W.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970401</creationdate><title>Central Limit Theorem for the Edwards Model</title><author>van der Hofstad, R. ; den Hollander, F. ; Konig, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>60F05</topic><topic>60J55</topic><topic>60J65</topic><topic>Bleeding time</topic><topic>Brownian motion</topic><topic>Central limit theorem</topic><topic>Edwards model</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Infinity</topic><topic>Limit theorems</topic><topic>Markov processes</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operator theory</topic><topic>Polymers</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Ray-Knight theorems</topic><topic>Sciences and techniques of general use</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Hofstad, R.</creatorcontrib><creatorcontrib>den Hollander, F.</creatorcontrib><creatorcontrib>Konig, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Hofstad, R.</au><au>den Hollander, F.</au><au>Konig, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central Limit Theorem for the Edwards Model</atitle><jtitle>The Annals of probability</jtitle><date>1997-04-01</date><risdate>1997</risdate><volume>25</volume><issue>2</issue><spage>573</spage><epage>597</epage><pages>573-597</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1024404412</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 1997-04, Vol.25 (2), p.573-597 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1024404412 |
source | Jstor Complete Legacy; JSTOR Mathematics and Statistics; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete |
subjects | 60F05 60J55 60J65 Bleeding time Brownian motion Central limit theorem Edwards model Eigenfunctions Eigenvalues Exact sciences and technology Infinity Limit theorems Markov processes Martingales Mathematical analysis Mathematics Operator theory Polymers Probability and statistics Probability theory and stochastic processes Ray-Knight theorems Sciences and techniques of general use Transition probabilities |
title | Central Limit Theorem for the Edwards Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20Limit%20Theorem%20for%20the%20Edwards%20Model&rft.jtitle=The%20Annals%20of%20probability&rft.au=van%20der%20Hofstad,%20R.&rft.date=1997-04-01&rft.volume=25&rft.issue=2&rft.spage=573&rft.epage=597&rft.pages=573-597&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1024404412&rft_dat=%3Cjstor_proje%3E2959604%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2959604&rfr_iscdi=true |