Central Limit Theorem for the Edwards Model

The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 1997-04, Vol.25 (2), p.573-597
Hauptverfasser: van der Hofstad, R., den Hollander, F., Konig, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 2
container_start_page 573
container_title The Annals of probability
container_volume 25
creator van der Hofstad, R.
den Hollander, F.
Konig, W.
description The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).
doi_str_mv 10.1214/aop/1024404412
format Article
fullrecord <record><control><sourceid>jstor_proje</sourceid><recordid>TN_cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1024404412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2959604</jstor_id><sourcerecordid>2959604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</originalsourceid><addsrcrecordid>eNplUE1Lw0AQXUTBWr168pCDN0k7k0w2uzcl1A-IeGnBW9hkd2lK2i27EfHfG2loD54ezLwP3mPsFmGGCdJcuf0cISECIkzO2CRBLmIh6fOcTQAkxphLccmuQtgAAM9zmrCHwux6r7qobLdtHy3XxnmzjazzUb820UJ_K69D9O606a7ZhVVdMDcjTtnqebEsXuPy4-WteCrjJhXUxzWmkFlqgIY8QEK0UKeIIKw1XGQ1WWlsYiSSyrhOSSst0EoC1EYonk7Z48F3793GNL35arpWV3vfbpX_qZxqq2JVjtcRhvLVqfxgMTtYNN6F4I09qhGqv7X-C-7HTBUa1Vmvdk0bjqqEC56THGh3B9om9M6f3jKTHCj9BamzclU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Central Limit Theorem for the Edwards Model</title><source>Jstor Complete Legacy</source><source>JSTOR Mathematics and Statistics</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>van der Hofstad, R. ; den Hollander, F. ; Konig, W.</creator><creatorcontrib>van der Hofstad, R. ; den Hollander, F. ; Konig, W.</creatorcontrib><description>The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/aop/1024404412</identifier><identifier>CODEN: APBYAE</identifier><language>eng</language><publisher>Hayward, CA: Institute of Mathematical Statistics</publisher><subject>60F05 ; 60J55 ; 60J65 ; Bleeding time ; Brownian motion ; Central limit theorem ; Edwards model ; Eigenfunctions ; Eigenvalues ; Exact sciences and technology ; Infinity ; Limit theorems ; Markov processes ; Martingales ; Mathematical analysis ; Mathematics ; Operator theory ; Polymers ; Probability and statistics ; Probability theory and stochastic processes ; Ray-Knight theorems ; Sciences and techniques of general use ; Transition probabilities</subject><ispartof>The Annals of probability, 1997-04, Vol.25 (2), p.573-597</ispartof><rights>Copyright 1997 Institute of Mathematical Statistics</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</citedby><cites>FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2959604$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2959604$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,921,27901,27902,57992,57996,58225,58229,79752,79760</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2686749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Hofstad, R.</creatorcontrib><creatorcontrib>den Hollander, F.</creatorcontrib><creatorcontrib>Konig, W.</creatorcontrib><title>Central Limit Theorem for the Edwards Model</title><title>The Annals of probability</title><description>The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).</description><subject>60F05</subject><subject>60J55</subject><subject>60J65</subject><subject>Bleeding time</subject><subject>Brownian motion</subject><subject>Central limit theorem</subject><subject>Edwards model</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Infinity</subject><subject>Limit theorems</subject><subject>Markov processes</subject><subject>Martingales</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operator theory</subject><subject>Polymers</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Ray-Knight theorems</subject><subject>Sciences and techniques of general use</subject><subject>Transition probabilities</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNplUE1Lw0AQXUTBWr168pCDN0k7k0w2uzcl1A-IeGnBW9hkd2lK2i27EfHfG2loD54ezLwP3mPsFmGGCdJcuf0cISECIkzO2CRBLmIh6fOcTQAkxphLccmuQtgAAM9zmrCHwux6r7qobLdtHy3XxnmzjazzUb820UJ_K69D9O606a7ZhVVdMDcjTtnqebEsXuPy4-WteCrjJhXUxzWmkFlqgIY8QEK0UKeIIKw1XGQ1WWlsYiSSyrhOSSst0EoC1EYonk7Z48F3793GNL35arpWV3vfbpX_qZxqq2JVjtcRhvLVqfxgMTtYNN6F4I09qhGqv7X-C-7HTBUa1Vmvdk0bjqqEC56THGh3B9om9M6f3jKTHCj9BamzclU</recordid><startdate>19970401</startdate><enddate>19970401</enddate><creator>van der Hofstad, R.</creator><creator>den Hollander, F.</creator><creator>Konig, W.</creator><general>Institute of Mathematical Statistics</general><general>The Institute of Mathematical Statistics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970401</creationdate><title>Central Limit Theorem for the Edwards Model</title><author>van der Hofstad, R. ; den Hollander, F. ; Konig, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b1305f4c0417901411f0b31108ffe685b4f9ef2e914a56d34dad81f9401de8a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>60F05</topic><topic>60J55</topic><topic>60J65</topic><topic>Bleeding time</topic><topic>Brownian motion</topic><topic>Central limit theorem</topic><topic>Edwards model</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Infinity</topic><topic>Limit theorems</topic><topic>Markov processes</topic><topic>Martingales</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operator theory</topic><topic>Polymers</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Ray-Knight theorems</topic><topic>Sciences and techniques of general use</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Hofstad, R.</creatorcontrib><creatorcontrib>den Hollander, F.</creatorcontrib><creatorcontrib>Konig, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Hofstad, R.</au><au>den Hollander, F.</au><au>Konig, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Central Limit Theorem for the Edwards Model</atitle><jtitle>The Annals of probability</jtitle><date>1997-04-01</date><risdate>1997</risdate><volume>25</volume><issue>2</issue><spage>573</spage><epage>597</epage><pages>573-597</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><coden>APBYAE</coden><abstract>The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).</abstract><cop>Hayward, CA</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/aop/1024404412</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-1798
ispartof The Annals of probability, 1997-04, Vol.25 (2), p.573-597
issn 0091-1798
2168-894X
language eng
recordid cdi_projecteuclid_primary_oai_CULeuclid_euclid_aop_1024404412
source Jstor Complete Legacy; JSTOR Mathematics and Statistics; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete
subjects 60F05
60J55
60J65
Bleeding time
Brownian motion
Central limit theorem
Edwards model
Eigenfunctions
Eigenvalues
Exact sciences and technology
Infinity
Limit theorems
Markov processes
Martingales
Mathematical analysis
Mathematics
Operator theory
Polymers
Probability and statistics
Probability theory and stochastic processes
Ray-Knight theorems
Sciences and techniques of general use
Transition probabilities
title Central Limit Theorem for the Edwards Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T04%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proje&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Central%20Limit%20Theorem%20for%20the%20Edwards%20Model&rft.jtitle=The%20Annals%20of%20probability&rft.au=van%20der%20Hofstad,%20R.&rft.date=1997-04-01&rft.volume=25&rft.issue=2&rft.spage=573&rft.epage=597&rft.pages=573-597&rft.issn=0091-1798&rft.eissn=2168-894X&rft.coden=APBYAE&rft_id=info:doi/10.1214/aop/1024404412&rft_dat=%3Cjstor_proje%3E2959604%3C/jstor_proje%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2959604&rfr_iscdi=true