Central Limit Theorem for the Edwards Model

The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 1997-04, Vol.25 (2), p.573-597
Hauptverfasser: van der Hofstad, R., den Hollander, F., Konig, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Edwards model in one dimension is a transformed path measure for standard Brownian motion discouraging self-intersections. We prove a central limit theorem for the endpoint of the path, extending a law of large numbers proved by Westwater. The scaled variance is characterized in terms of the largest eigenvalue of a one-parameter family of differential operators, introduced and analyzed by van der Hofstad and den Hollander. Interestingly, the scaled variance turns out to be independent of the strength of self-repellence and to be strictly smaller than one (the value for free Brownian motion).
ISSN:0091-1798
2168-894X
DOI:10.1214/aop/1024404412