The Euler Scheme for Levy Driven Stochastic Differential Equations

In relation with Monte Carlo methods to solve some integro-differential equations, we study the approximation problem of Eg(XT) by Eg(X̄n T), where (Xt, 0 ≤ t ≤ T) is the solution of a stochastic differential equation governed by a Levy process (Zt), (X̄n t) is defined by the Euler discretization sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of probability 1997-01, Vol.25 (1), p.393-423
Hauptverfasser: Protter, Philip, Talay, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In relation with Monte Carlo methods to solve some integro-differential equations, we study the approximation problem of Eg(XT) by Eg(X̄n T), where (Xt, 0 ≤ t ≤ T) is the solution of a stochastic differential equation governed by a Levy process (Zt), (X̄n t) is defined by the Euler discretization scheme with step T/n. With appropriate assumptions on g(·), we show that the error Eg(XT) - Eg(X̄n T) can be expanded in powers of 1/n if the Levy measure of Z has finite moments of order high enough. Otherwise the rate of convergence is slower and its speed depends on the behavior of the tails of the Levy measure.
ISSN:0091-1798
2168-894X
DOI:10.1214/aop/1024404293