Epsilon Entropy of Gaussian Processes

This paper shows that the epsilon entropy of any mean-continuous Gaussian process on L2[ 0, 1 ] is finite for all positive ε. The epsilon entropy of such a process is defined as the infimum of the entropies of all partitions of L2[ 0, 1 ] by measurable sets of diameter at most ε, where the probabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of mathematical statistics 1969-08, Vol.40 (4), p.1272-1296
Hauptverfasser: Posner, Edward C., Rodemich, Eugene R., Rumsey, Howard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper shows that the epsilon entropy of any mean-continuous Gaussian process on L2[ 0, 1 ] is finite for all positive ε. The epsilon entropy of such a process is defined as the infimum of the entropies of all partitions of L2[ 0, 1 ] by measurable sets of diameter at most ε, where the probability measure on L2is the one induced by the process. Fairly tight upper and lower bounds are found as ε → 0 for the epsilon entropy in terms of the eigenvalues of the process.
ISSN:0003-4851
2168-8990
DOI:10.1214/aoms/1177697502