Linear Spaces and Minimum Variance Unbiased Estimation

Consideration is given to minimum variance unbiased estimation when the choice of estimators is restricted to a finite-dimensional linear space. The discussion gives generalizations and minor extensions of known results in linear model theory utilizing both the coordinate-free approach of Kruskal an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of mathematical statistics 1971-04, Vol.42 (2), p.691-703
Hauptverfasser: Seely, Justus, Zyskind, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consideration is given to minimum variance unbiased estimation when the choice of estimators is restricted to a finite-dimensional linear space. The discussion gives generalizations and minor extensions of known results in linear model theory utilizing both the coordinate-free approach of Kruskal and the usual parametric representations. Included are (i) a restatement of a theorem on minimum variance unbiased estimation by Lehmann and Scheffe; (ii) a minor extension of a theorem by Zyskind on best linear unbiased estimation; (iii) a generalization of the covariance adjustment procedure described by Rao; (iv) a generalization of the normal equations; and (v) criteria for existence of minimum variance unbiased estimators by means of invariant subspaces. Illustrative examples are included.
ISSN:0003-4851
2168-8990
DOI:10.1214/aoms/1177693418