Linear Spaces and Minimum Variance Unbiased Estimation
Consideration is given to minimum variance unbiased estimation when the choice of estimators is restricted to a finite-dimensional linear space. The discussion gives generalizations and minor extensions of known results in linear model theory utilizing both the coordinate-free approach of Kruskal an...
Gespeichert in:
Veröffentlicht in: | The Annals of mathematical statistics 1971-04, Vol.42 (2), p.691-703 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consideration is given to minimum variance unbiased estimation when the choice of estimators is restricted to a finite-dimensional linear space. The discussion gives generalizations and minor extensions of known results in linear model theory utilizing both the coordinate-free approach of Kruskal and the usual parametric representations. Included are (i) a restatement of a theorem on minimum variance unbiased estimation by Lehmann and Scheffe; (ii) a minor extension of a theorem by Zyskind on best linear unbiased estimation; (iii) a generalization of the covariance adjustment procedure described by Rao; (iv) a generalization of the normal equations; and (v) criteria for existence of minimum variance unbiased estimators by means of invariant subspaces. Illustrative examples are included. |
---|---|
ISSN: | 0003-4851 2168-8990 |
DOI: | 10.1214/aoms/1177693418 |